Часы с механической разверткой на ардуино. Светодиодные часы на Arduino. Считывание показаний времени с DS1307

Во многих проектах Ардуино требуется отслеживать и фиксировать время наступления тех или иных событий. Модуль часов реального времени, оснащенный дополнительной батарей, позволяет хранить текущую дату, не завися от наличия питания на самом устройстве. В этой статье мы поговорим о наиболее часто встречающихся модулях RTC DS1307, DS1302, DS3231, которые можно использовать с платой Arduino.

Модуль часов представляет собой небольшую плату, содержащей, как правило, одну из микросхем DS1307, DS1302, DS3231.Кроме этого, на плате практически можно найти механизм установки батарейки питания. Такие платы часто применяется для учета времени, даты, дня недели и других хронометрических параметров. Модули работают от автономного питания – батареек, аккумуляторов, и продолжают проводить отсчет, даже если на Ардуино отключилось питание. Наиболее распространенными моделями часов являются DS1302, DS1307, DS3231. Они основаны на подключаемом к Arduino модуле RTC (часы реального времени).

Часы ведут отсчет в единицах, которые удобны обычному человеку – минуты, часы, дни недели и другие, в отличие от обычных счетчиков и тактовых генераторов, которые считывают «тики». В Ардуино имеется специальная функция millis(), которая также может считывать различные временные интервалы. Но основным недостатком этой функции является сбрасывание в ноль при включении таймера. С ее помощью можно считать только время, установить дату или день недели невозможно. Для решения этой проблемы и используются модули часов реального времени.

Электронная схема включает в себя микросхему, источник питания, кварцевый резонатор и резисторы. Кварцевый резонатор работает на частоте 32768 Гц, которая является удобной для обычного двоичного счетчика. В схеме DS3231 имеется встроенный кварц и термостабилизация, которые позволяют получить значения высокой точности.

Сравнение популярных модулей RTC DS1302, DS1307, DS3231

В этой таблице мы привели список наиболее популярных модулей и их основные характеристики.

Название Частота Точность Поддерживаемые протоколы
DS1307 1 Гц, 4.096 кГц, 8.192 кГц, 32.768 кГц Зависит от кварца – обычно значение достигает 2,5 секунды в сутки, добиться точности выше 1 секунды в сутки невозможно. Также точность зависит от температуры. I2C
DS1302 32.768 кГц 5 секунд в сутки I2C, SPI
DS3231 Два выхода – первый на 32.768 кГц, второй – программируемый от 1 Гц до 8.192 кГц ±2 ppm при температурах от 0С до 40С.

±3,5 ppm при температурах от -40С до 85С.

Точность измерения температуры – ±3С

I2C

Модуль DS1307

DS1307 – это модуль, который используется для отсчета времени. Он собран на основе микросхемы DS1307ZN, питание поступает от литиевой батарейки для реализации автономной работы в течение длительного промежутка времени. Батарея на плате крепится на обратной стороне. На модуле имеется микросхема AT24C32 – это энергонезависимая память EEPROM на 32 Кбайт. Обе микросхемы связаны между собой шиной I2C. DS1307 обладает низким энергопотреблением и содержит часы и календарь по 2100 год.

Модуль обладает следующими параметрами:

  • Питание – 5В;
  • Диапазон рабочих температур от -40С до 85С;
  • 56 байт памяти;
  • Литиевая батарейка LIR2032;
  • Реализует 12-ти и 24-х часовые режимы;
  • Поддержка интерфейса I2C.

Модуль оправдано использовать в случаях, когда данные считываются довольно редко, с интервалом в неделю и более. Это позволяет экономить на питании, так как при бесперебойном использовании придется больше тратить напряжения, даже при наличии батарейки. Наличие памяти позволяет регистрировать различные параметры (например, измерение температуры) и считывать полученную информацию из модуля.

Взаимодействие с другими устройствами и обмен с ними информацией производится с помощью интерфейса I2C с контактов SCL и SDA. В схеме установлены резисторы, которые позволяют обеспечивать необходимый уровень сигнала. Также на плате имеется специальное место для крепления датчика температуры DS18B20.Контакты распределены в 2 группы, шаг 2,54 мм. В первой группе контактов находятся следующие выводы:

  • DS – вывод для датчика DS18B20;
  • SCL – линия тактирования;
  • SDA – линия данных;
  • VCC – 5В;

Во второй группе контактов находятся:

  • SQ – 1 МГц;
  • BAT – вход для литиевой батареи.

Для подключения к плате Ардуино нужны сама плата (в данном случае рассматривается Arduino Uno), модуль часов реального времени RTC DS1307, провода и USB кабель.

Чтобы подключить контроллер к Ардуино, используются 4 пина – VCC, земля, SCL, SDA.. VCC с часов подключается к 5В на Ардуино, земля с часов – к земле с Ардуино, SDA – А4, SCL – А5.

Для начала работы с модулем часов нужно установить библиотеки DS1307RTC, TimeLib и Wire. Можно использовать для работы и RTCLib.

Проверка RTC модуля

При запуске первого кода программа будет считывать данные с модуля раз в секунду. Сначала можно посмотреть, как поведет себя программа, если достать из модуля батарейку и заменить на другую, пока плата Ардуино не присоединена к компьютеру. Нужно подождать несколько секунд и вытащить батарею, в итоге часы перезагрузятся. Затем нужно выбрать пример в меню Examples→RTClib→ds1307. Важно правильно поставить скорость передачи на 57600 bps.

При открытии окна серийного монитора должны появиться следующие строки:

Будет показывать время 0:0:0. Это связано с тем, что в часах пропадает питание, и отсчет времени прекратится. По этой причине нельзя вытаскивать батарею во время работы модуля.

Чтобы провести настройку времени на модуле, нужно в скетче найти строку

RTC.adjust(DateTime(__DATE__, __TIME__));

В этой строке будут находиться данные с компьютера, которые используются ля прошивки модуля часов реального времени. Для корректной работы нужно сначала проверить правильность даты и времени на компьютере, и только потом начинать прошивать модуль часов. После настройки в мониторе отобразятся следующие данные:

Настройка произведена корректно и дополнительно перенастраивать часы реального времени не придется.

Считывание времени. Как только модуль настроен, можно отправлять запросы на получение времени. Для этого используется функция now(), возвращающая объект DateTime, который содержит информацию о времени и дате. Существует ряд библиотек, которые используются для считывания времени. Например, RTC.year() и RTC.hour() – они отдельно получают информацию о годе и часе. При работе с ними может возникнуть проблема: например, запрос на вывод времени будет сделан в 1:19:59. Прежде чем показать время 1:20:00, часы выведут время 1:19:00, то есть, по сути, будет потеряна одна минута. Поэтому эти библиотеки целесообразно использовать в случаях, когда считывание происходит нечасто – раз в несколько дней. Существуют и другие функции для вызова времени, но если нужно уменьшить или избежать погрешностей, лучше использовать now() и из нее уже вытаскивать необходимые показания.

Пример проекта с i2C модулем часов и дисплеем

Проект представляет собой обычные часы, на индикатор будет выведено точное время, а двоеточие между цифрами будет мигать с интервалом раз в одну секунду. Для реализации проекта потребуются плата Arduino Uno, цифровой индикатор, часы реального времени (в данном случае вышеописанный модуль ds1307), шилд для подключения (в данном случае используется Troyka Shield), батарейка для часов и провода.

В проекте используется простой четырехразрядный индикатор на микросхеме TM1637. Устройство обладает двухпроводным интерфейсом и обеспечивает 8 уровней яркости монитора. Используется только для показа времени в формате часы:минуты. Индикатор прост в использовании и легко подключается. Его выгодно применять для проектов, когда не требуется поминутная или почасовая проверка данных. Для получения более полной информации о времени и дате используются жидкокристаллические мониторы.

Модуль часов подключается к контактам SCL/SDA, которые относятся к шине I2C. Также нужно подключить землю и питание. К Ардуино подключается так же, как описан выше: SDA – A4, SCL – A5, земля с модуля к земле с Ардуино, VCC -5V.

Индикатор подключается просто – выводы с него CLK и DIO подключаются к любым цифровым пинам на плате.

Скетч. Для написания кода используется функция setup, которая позволяет инициализировать часы и индикатор, записать время компиляции. Вывод времени на экран будет выполнен с помощью loop.

#include #include "TM1637.h" #include "DS1307.h" //нужно включить все необходимые библиотеки для работы с часами и дисплеем. char compileTime = __TIME__; //время компиляции. #define DISPLAY_CLK_PIN 10 #define DISPLAY_DIO_PIN 11 //номера с выходов Ардуино, к которым присоединяется экран; void setup() { display.set(); display.init(); //подключение и настройка экрана. clock.begin(); //включение часов. byte hour = getInt(compileTime, 0); byte minute = getInt(compileTime, 2); byte second = getInt(compileTime, 4); //получение времени. clock.fillByHMS(hour, minute, second); //подготовка для записывания в модуль времени. clock.setTime(); //происходит запись полученной информации во внутреннюю память, начало считывания времени. } void loop() { int8_t timeDisp; //отображение на каждом из четырех разрядов. clock.getTime();//запрос на получение времени. timeDisp = clock.hour / 10; timeDisp = clock.hour % 10; timeDisp = clock.minute / 10; timeDisp = clock.minute % 10; //различные операции для получения десятков, единиц часов, минут и так далее. display.display(timeDisp); //вывод времени на индикатор display.point(clock.second % 2 ? POINT_ON: POINT_OFF);//включение и выключение двоеточия через секунду. } char getInt(const char* string, int startIndex) { return int(string - "0") * 10 + int(string) - "0"; //действия для корректной записи времени в двухзначное целое число. В ином случае на экране будет отображена просто пара символов. }

После этого скетч нужно загрузить и на мониторе будет показано время.

Программу можно немного модернизировать. При отключении питания выше написанный скетч приведет к тому, что после включения на дисплее будет указано время, которое было установлено при компиляции. В функции setup каждый раз будет рассчитываться время, которое прошло с 00:00:00 до начала компиляции. Этот хэш будет сравниваться с тем, что хранятся в EEPROM, которые сохраняются при отключении питания.

Для записи и чтения времени в энергонезависимую память или из нее нужно добавить функции EEPROMWriteInt и EEPROMReadInt. Они нужны для проверки совпадения/несовпадения хэша с хэшем, записанным в EEPROM.

Можно усовершенствовать проект. Если использовать жидкокристаллический монитор, можно сделать проект, который будет отображать дату и время на экране. Подключение всех элементов показано на рисунке.

В результате в коде нужно будет указать новую библиотеку (для жидкокристаллических экранов это LiquidCrystal), и добавить в функцию loop() строки для получения даты.

Алгоритм работы следующий:

  • Подключение всех компонентов;
  • Проверка – на экране монитора должны меняться ежесекундно время и дата. Если на экране указано неправильное время, нужно добавить в скетч функцию RTC.write (tmElements_t tm). Проблемы с неправильно указанным временем связаны с тем, что модуль часов сбрасывает дату и время на 00:00:00 01/01/2000 при выключении.
  • Функция write позволяет получить дату и время с компьютера, после чего на экране будут указаны верные параметры.

Заключение

Модули часов используются во многих проектах. Они нужны для систем регистрации данных, при создании таймеров и управляющих устройств, которые работают по заданному расписанию, в бытовых приборах. С помощью широко распространенных и дешевых модулей вы можете создать такие проекты как будильник или регистратор данных с сенсоров, записывая информацию на SD-карту или показывая время на экране дисплея. В этой статье мы рассмотрели типичные сценарии использования и варианты подключения наиболее популярных видов модулей.

Готовый проект в одном модуле включает в себя множество функций: часы с отображением даты и времени, секундомер, будильник, отслеживание движения (для автоматического отключения когда вас нет на месте).

Материалы:
- Arduino Uno
- LCD шилд (с кнопками, в проекте используется шилд от DFRobot)
- Коробка для корпуса
- Зуммер
- Инфракрасный датчик движения (PIR)
- Соединительные провода (мама/мама)
- Джек 2.1 мм
- Переходник для кроны 9В 2.1 мм / 5.5 мм
- Крона 9 В
- Часы реального времени

Шаг первый. Модуль часов реального времени.
Часто модуль часов поставляют в виде конструктора, который приходится собирать самому. Обычно сборка не вызывает проблем, плюс производители выпускают инструкции по сборке их модуля. Также батарейка идёт в комплекте с часами, её хватит более чем на три года.

Шаг второй. Коннектор питания.
Для упрощения подключения конструкции к Arduino автор использует джек на 2.1 мм с припаянными контактами. В коробке проделывают отверстие, и джек закрепляют клеем. Таким образом, подключение к Arduino не составит проблем. Крону просто установят на заднюю часть бокса. Если рассмотреть фото поближе можно заметить ещё одно отверстие в коробке. Его делать не нужно, это просто неудачная попытка сделать отверстие, в него джек просто не влез.

Шаг третий. Подсоединение проводов.
Автором были приобретены разноцветные провода мама/мама. Обошлись они недорого, но сильно облегчили процесс сборки. Проводники подключили к зуммеру, ПИР датчику движения, модулю часов, чтобы потом все это подсоединить к LCD шилду.

Шаг четвёртый. Подключение к LCD шилду.
На шилде имеется 5 рядов контактов, их пины на Arduino 1-5 соответственно. Имеется контакт для 5 В и GND, это всё и использовалось для подключения. Для передачи данных с зуммером, датчиком и часами реального времени используются аналоговые пины Arduino. Датчик с часами, конечно же, подключали к земле и питанию.

Шаг пятый. Установка в коробку.
В этом шаге конструкцию помещают в отдельный бокс. В первую очередь в коробку укладывают кабели от LCD шилда. Arduino закрепляют винтом нижней правой части корпуса. Для удержания микроконтроллера достаточно одного винта, тем более что автор использует такой бокс, в котором рёбра жёсткости располагаются на месте отверстий для двух других винтов. Далее, на Arduino устанавливают LCD шилд, кабели которого огибают плату с правой стороны (видно на фото ниже). Модуль часов отлично подходит для установки в левом нижнем углу, для его крепления используется один винт. Такая установка компонентов разрешает без проблем подключить джек 2.1 мм к Arduino. Датчик движения ставят так чтобы была возможность его снять, потому что он мешает подключить кабель USB к плате.

Шаг шестой. Программирование.
Как указано в начале статьи часы должны не только отображать время и дату, но и таймер с будильников. На шилде имеется 5 кнопок, которые можно запрограммировать. Использоваться они будут для различных режимов работы часов. Зуммер будет отрабатывать при нажатии каждой кнопки, а при работе будильника он подаст несколько сигналов.

Скетч для Arduino.
За основу автором взят скетч от Adafruit, его разработали для часов реального времени. В нём используют библиотеку RTClib. Далее, автор добавил кусок кода для LCD шилда от DFRobot (опция управления кнопками). И кусок кода добавил от себя исключительно под этот проект. Финальную версию кода можно скачать под статьёй. Ниже представлены фото с разными режимами работы часов.

Шаг седьмой. Функции кнопок.
Как видно на фото ниже каждая кнопка на шилде подписана, пять из них были запрограммированы так:
- Первая кнопка (SELECT) - это меню. Кнопка отображает листание имеющихся функций (таймер, будильник).
- Вторая кнопка (LEFT) - эта кнопка отвечает за выбор функции. Дополнительная функция кнопки увеличение значения на 10 когда вводятся часы и минуты.
- Третья и четвёртая кнопки (UP, DOWN) - используются для увеличения и уменьшения значений часов и минут при настройке будильника и таймера. Дополнительная функция кнопок для переключения времени суток AM и PM.
- Пятая кнопка (RIGHT) - это кнопка ввода. Используется для принятия значения (настроенное время таймера, часов).
- Шестая кнопка (RST) - кнопка используется для перезагрузки Arduino.

После создания множества прототипов Arduino на макетной плате, я решил сделать что-то полезное, то, что можно использовать дома. А что может быть полезнее, чем светящиеся часы, которые почему-то с 2010 года перестали выпускаться? Начал я сборку цифровых часов с поиска необходимых деталей. Одним из критериев, который помог быстрее насобирать необходимые компоненты, стала доступность деталей в местных магазинах и от производителей из Китая, Малайзии.

Arduino часы реального времени (RTC) на 7-сегментных индикаторах

При сборке часов, появилось несколько вариантов настройки на них точного времени. Первый: устанавливать время на Arduino , держа его все время под питанием. Но такой метод не очень целесообразный, так как каждый раз, когда понадобиться установить время, надо будет пустить питание на Arduino.

Вторым вариантом была идея подключения 7-сегментных LED -индикаторов к GPS модулю . Поскольку GPS сигнал дает очень точное время, этот вариант должен был решить проблему, и не пришлось бы настраивать часы каждый раз при их включении. Я взял свой карманный навигатор Garmin GPS 60 C, подключил его в последовательный разъем к Arduino и загрузил несколько библиотек GPS, получив таким образом сигнал очень точного времени.

Проблема GPS метода оказалась в том, что, поскольку я живу центре города, то каменные джунгли непроглядными высотками окружают мой дом, и понадобилось бы поставить внешнюю GPS антенну снаружи окна, чтобы получить GPS сигнал с чистого неба. Без спутникового покрытия, никакое устройство GPS не в состоянии получить сигнал с синхронизацией по времени. Или часы должны быть на окне, либо надо было вынести GPS-антенну и проложить 7-метровый кабель до них.

Третий способ настройки часов оказался наилучшим. Заключается он в работе Arduino совместно с DS1307 часами реального времени (RTC). Питание на них идет от таблеточной 3-вольтовой батарейки, которая сохраняет настройки, когда устройство выключено и во время отсоединения микроконтроллера.

Я пошел в местный «электронный рай», расположенный в центре города, чтобы испытать свою удачу в поиске необходимых компонентов. К моему удивлению, там я нашел все необходимые детали для сборки цифровых часов.

Необходимыми деталями являются:

  1. плата Arduino для макетирования и загрузки скетча в микроконтроллер;
  2. микроконтроллер ATmega328P для работы часов;
  3. четыре красных 7-сегментных LED-индикатора (или другие, более холодного цвета, которые найдете на местном рынке);
  4. часы реального времени DS1307;
  5. кварцевый резонатор на 32,768 кГц;
  6. держатель для батарейки таблеточного размера CR2025 или CR2032;
  7. четыре микросхемы 74HC595 сдвигающего регистра для управления 7-сегментными LED-индикаторами;
  8. резисторы 220 Ом по 0.25 Вт;
  9. однорядные штыревые разъёмы;
  10. гнезда для интегральных микросхем (IC);
  11. соединительные провода.

Если нет навыков в изготовлении печатных плат, то рекомендую использовать паечную макетную плату (текстолитовая пластинка с множеством отверстий для закрепления на ней пайкой компонентов, которую ошибочно называют монтажной платой ) и припаять на неё все IC гнезда микросхем и штыревые разъёмы. Благодаря таким быстроразъемным контактам все 7-сегментные LED-индикаторы и интегральные микросхемы могут быть легко заменены при необходимости.

Поскольку размер макетной платы весьма ограничен, то удалось разместить на ней только 35-миллиметровые LED-индикаторы, ведь должно было ещё остаться место для держателя таблеточной батарейки. Хотелось бы поставить гораздо большие 7-сегментные индикаторы, но более крупным из них надо повышенное напряжение, свыше 5 В, и уже потребовалось таки усложнить схему двойными цепями питания. Иметь дело со стабилизатором на два выходных напряжения не хочется, лучше сосредоточиться на более простой версии цифровых часов.

Разделительные керамические конденсаторы 100 нФ на ножке питания Vcc каждого регистра 74HC595 добавлены, чтобы предотвратить любые проблемы с низкочастотными помехами.

Собираемые цифровые часы используют только 5 пинов Arduino:

  • 3 цифровых выхода для сдвигающих регистров 74HC595;
  • 2 аналоговых выхода для часов реального времени, подключенных с использованием соединения I2C.

Преимущество собираемых цифровых часов на Arduino в сравнении с заводскими в том, что к ним можно легко добавить любые функции, какие только могут стать полезны.

Вот некоторые идеи доработки часов:

  1. Чередование отображения на индикаторах часов/минут и минут/секунд;
  2. Проигрывание мелодии каждый час;
  3. Установка датчика LM35, и использование часов в качестве термометра;
  4. Функция утреннего будильника;
  5. Даже управление другими электрическими приборами с помощью электромеханического реле, включающегося в соответствии с определёнными по времени событиями или показаниями подключенных датчиков.

Так как четыре индикатора довольно большие и яркие, их можно использовать также для отображения буквенной информации.

После того, как я припаял первую цифру 7 сегментного LED-индикатора с общим катодом к сдвигающему регистру 74HC595, открылась первая проблема. Я использовал только один резистор 220 Ом, соединенный с общим катодом LED-индикатора, чтобы сберечь резисторы, и обнаружил, что когда включается число 8, то все сегменты загораются очень тускло. Это нормально для прототипа, но не годится для действующих цифровых часов. Было бы очень неприятно иметь часы с по-разному светящимися цифрами. Так что пришлось разорвать отдельные провода и раздобыть побольше резисторов на 220 Ом, чтобы подключить их к каждому из семи сегментов LED-индикатора.

Вторая проблема была в том, что я забыл выделить место для двух светодиодов диаметром 5 мм, в качестве мигающего двоеточия индикатора секунд. А индикатор третьей цифры уже был припаян.

Поскольку слишком много труда уходит на пайку одного индикатора, вместе с присоединением всех резисторов к проводам, я решил сделать выносную платку с двумя светодиодами в качестве индикаторов секунд. Я найду способ установки двух точек между часовыми и минутными цифрами! На фотографии внизу, я просто снимаю по светодиоду на 13 выводе мигания с интервалом в 500 мс.

  • Есть коды .
  • Окончательный скетч

Вот несколько фотографий собранного, работающего устройства. Теперь мне всего лишь нужно что-то вроде акрила, чтобы закрепить макетную плату и скрыть часы Arduino в общем корпусе.

Эти часы запитаны от выносной платы Arduino в версии с FTDI кабелем и гнездом DC постоянного тока.

Сборка Arduino часов завершена после установки DHT11 датчика влажности и температуры.

Самодельный датчик температуры и влажности DHT11 и DHT22 – подключение к Arduino GPS часы на Arduino

Понадобилось как-то сделать большие настенные часы с автоматической яркостью.

Такие часы отлично подойдут для больших помещений, например холл офиса или большая квартира.

Сделать такие большие настенные часы не представляет серьёзных сложностей при помощи данной инструкции.


Для оценки размера часов можно принять тот факт, что один сегмент часов будет размером с бумагу формата А4, что позволит легко использовать рамки для фотографий соответствующего размера.

Шаг 1. Составные части больших настенных часов.

Провода, припой, паяльник, лента светодиодная Arduino Nano DC-DC преобразователь LM2596
4 метра светодиодной ленты WS2811 датчик света часы реального времени DS3231
микропереключатели

Что я использовал для этого проекта:

Шаг 8. Программируем часы.

Немного повозившись, мне удалось получить часы, полностью удовлетворяющие моим потребностям. Я уверен что вам удастся сделать лучше моего.

Код хорошо прокоментирован и вам не составит труда в нём разобраться, сообщения отладки так-же прокоментированы очень хорошо.

Если вам нужно поменять используемый цвет настенных часов вам необходимо поменять переменную на строчке 22 (int ledColor = 0x0000FF; // Color used (in hex) ). Вы можете найти список цветов и их коды в hex на странице: https://github.com/FastLED/FastLED/wiki/Pixel-refe…

Если у вас возникли проблемы при загрузке, используйте зеркало:http://bit.ly/1Qjtgg0

Мой итоговый скетч можно скачать .

Шаг 9. Делаем цифры используя полистирол.

Основание резака Рабочий орган резака Общий вид резака
Результат работы резака

Разрежьте каждый сегмент в шаблоне, напечатаетанного в начале.
Полистирол можно разрезать острым ножом, что довольно трудно, либо нехитрым приспособлением из нихромовой проволоки или гитарной струны и нескольких отрезков ОСБ-плиты.

Вы можете видеть, как это сделал я в изображениях выше.

Для того, чтобы запитать резак я использовал 12v блок питания.

В результате отрезаний должны получиться четыре сегмента для больших часов, один из которых показан на фото.

Шаг 10. Приклеиваем цифры и закрываем всё рассеивателем. Итоговые большие настенные часы.

Свечение днем Свечение ночью

После вырезания всех четырех цифр и точек настенных часов приклеиваем их всех на картон вместе со светодиодными лентами (для упрощения процесса я использовал двустороннюю клейкую ленту)

Для того, чтобы рассеять жесткий светодиодный свет я использовал два листа бумаги поверх полистироловых цифр. Для удобства и эстетичности я использовал бумагу размера А2, сложенную вдвое.

После завершения всех этих шагов я поместил получившуюся сборку больших настенных часов в соответствующую им большую фоторамку.

Эти часы получились очень эффектными и притягивающими взгляд. Я думаю что такие большие настенные часы отлично украсят множество помещений.

Вконтакте

Существует множество способов собрать электронные часы своими руками: схемы широко представлены в литературе и сети Интернет. Большинство современных реализаций построено на основе микроконтроллеров. Выполнение таких проектов зачастую требует обширных практических навыков и теоретических знаний в области электроники: умения пользоваться специализированным программным обеспечением, создавать в домашних условиях печатные платы методом травления в хлорном железе, хорошо паять. Также необходимо иметь множество инструментов и расходных материалов.

Однако существует простой и доступный способ собрать электронные часы своими руками в домашних условиях: использовать платформу Arduino. Она представляет собой программно-аппаратный комплекс, специально предназначенный для обучения основам программирования и электроники. C помощью Arduino любой человек, даже без специальной предварительной подготовки, сможет построить электронные часы своими руками: схемы принципиальные, инженерные программы и даже паяльник не понадобятся!

Соединение всех электронных компонентов проводится на специальной контактной («беспаячной») макетной плате, что исключает риск получения ожогов, порезов и других травм - поэтому заниматься с конструктором Arduino можно и вместе с детьми. А наглядный способ представления принципиальной схемы поможет не ошибиться при сборке устройства.

Чтобы собрать простые часы на светодиодных матрицах вам потребуется всего несколько дешёвых компонентов:

  • платформа Arduino. Подойдут самые простые модели - или Micro;
  • контактная макетная плата;
  • соединительные провода для макетной платы;
  • модуль часов реального времени Adafruit DS3231;
  • светодиодный матричный модуль 32x8 MAX7219;
  • две кнопки.

Также понадобится персональный компьютер и USB-mini-USB кабель для загрузки программы управления в память . Вот и всё - паяльник, щипцы для снятия изоляции, монтажные ножи и прочие профессиональные инструменты не нужны: все операции выполняются руками. Разве что в некоторых случаях удобнее использовать пинцет, но можно обойтись и без него.


Шаг 2. Сборка электронной схемы

Схема электронных часов с индикацией на светодиодах с применением Arduino даже для неопытных радиолюбителей покажется довольно простой. Для сборки требуется всего несколько проводников. Таблица подключений:

Модуль Arduino → светодиодная матрица 32x8 MAX7219

Модуль Arduino → часы реального времени Adafruit DS3231

Модуль Arduino → кнопки

D2 - кнопка 1

D3 - кнопка 2

Второй вывод кнопок соединяется с землёй GND.

Следует лишь обратить внимание и запомнить, каким образом замкнуты между собой контактные отверстия на макетной плате. Следующая схема иллюстрирует способ внутреннего соединения контактных отверстий:


Два ряда (1 и 4) с обеих сторон замкнуты горизонтально - обычно они используются как линия питания +5V и земля GND. Все внутренние контакты (2 и 3) замкнуты вертикально. При этом монтажная плата как вертикально, так и горизонтально разделена на две независимые друг от друга симметричные части. Это позволяет, например, собрать два разных устройства на одной плате.

Схема электронных часов с индикацией на светодиодах, а также расположение элементов на монтажной плате представлена на иллюстрации:

Тщательно проверьте соответствие всех соединений указанной схеме. Также убедитесь в том, что проводники хорошо закреплены в контактных отверстиях монтажной платы.


Шаг 3. Прошивка Arduino

После того как сборка и проверка схемы завершена, можно приступать к загрузке управляющей программы (или «прошивки») в память Arduino.


Для этого нужно установить бесплатную официальную среду разработки - . Также вам потребуется исходный код проекта, который вы можете скачать ниже в архиве со всеми библиотеками и скетчем, а если вам нужен просто скетч - его можно скопировать отдельно:

//include libraries: #include "LedControl.h" #include // Font library #include // DS1307 clock #include "RTClib.h" // DS1307 clock #include // Button library by Alexander Brevig // Setup LED Matrix // pin 12 is connected to the DataIn on the display // pin 11 is connected to the CLK on the display // pin 10 is connected to LOAD on the display LedControl lc = LedControl(6, 5, 4, 4); //sets the 3 pins as 12, 11 & 10 and then sets 4 displays (max is 8 displays) //global variables byte intensity = 7; // Default intensity/brightness (0-15) byte clock_mode = 0; // Default clock mode. Default = 0 (basic_mode) bool random_mode = 0; // Define random mode - changes the display type every few hours. Default = 0 (off) byte old_mode = clock_mode; // Stores the previous clock mode, so if we go to date or whatever, we know what mode to go back to after. bool ampm = 0; // Define 12 or 24 hour time. 0 = 24 hour. 1 = 12 hour byte change_mode_time = 0; // Holds hour when clock mode will next change if in random mode. unsigned long delaytime = 500; // We always wait a bit between updates of the display int rtc; // Holds real time clock output char days = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" }; //day array - used in slide, basic_mode and jumble modes (The DS1307 outputs 1-7 values for day of week) char daysfull = { "Sunday", "Monday", "Tuesday", "Wed", "Thursday", "Friday", "Saturday" }; char suffix = { "st", "nd", "rd", "th" }; //date suffix array, used in slide, basic_mode and jumble modes. e,g, 1st 2nd ... //define constants #define NUM_DISPLAY_MODES 3 // Number display modes (conting zero as the first mode) #define NUM_SETTINGS_MODES 4 // Number settings modes = 6 (conting zero as the first mode) #define SLIDE_DELAY 20 // The time in milliseconds for the slide effect per character in slide mode. Make this higher for a slower effect #define cls clear_display // Clear display RTC_DS1307 ds1307; // Create RTC object Button buttonA = Button(2, BUTTON_PULLUP); // Setup button A (using button library) Button buttonB = Button(3, BUTTON_PULLUP); // Setup button B (using button library) void setup() { digitalWrite(2, HIGH); // turn on pullup resistor for button on pin 2 digitalWrite(3, HIGH); // turn on pullup resistor for button on pin 3 digitalWrite(4, HIGH); // turn on pullup resistor for button on pin 4 Serial.begin(9600); //start serial //initialize the 4 matrix panels //we have already set the number of devices when we created the LedControl int devices = lc.getDeviceCount(); //we have to init all devices in a loop for (int address = 0; address < devices; address++) { /*The MAX72XX is in power-saving mode on startup*/ lc.shutdown(3-address, false); /* Set the brightness to a medium values */ lc.setIntensity(3-address, intensity); /* and clear the display */ lc.clearDisplay(3-address); } //Setup DS1307 RTC #ifdef AVR Wire.begin(); #else Wire1.begin(); // Shield I2C pins connect to alt I2C bus on Arduino #endif ds1307.begin(); //start RTC Clock if (! ds1307.isrunning()) { Serial.println("RTC is NOT running!"); ds1307.adjust(DateTime(__DATE__, __TIME__)); // sets the RTC to the date & time this sketch was compiled } //Show software version & hello message printver(); //enable red led digitalWrite(13, HIGH); } void loop() { //run the clock with whatever mode is set by clock_mode - the default is set at top of code. switch (clock_mode){ case 0: basic_mode(); break; case 1: small_mode(); break; case 2: slide(); break; case 3: word_clock(); break; case 4: setup_menu(); break; } } //plot a point on the display void plot (byte x, byte y, byte val) { //select which matrix depending on the x coord byte address; if (x >= 0 && x <= 7) { address = 3; } if (x >= 8 && x <= 15) { address = 2; x = x - 8; } if (x >= 16 && x <= 23) { address = 1; x = x - 16; } if (x >= 24 && x <= 31) { address = 0; x = x - 24; } if (val == 1) { lc.setLed(address, y, x, true); } else { lc.setLed(address, y, x, false); } } //clear screen void clear_display() { for (byte address = 0; address < 4; address++) { lc.clearDisplay(address); } } //fade screen down void fade_down() { //fade from global intensity to 1 for (byte i = intensity; i > 0; i--) { for (byte address = 0; address < 4; address++) { lc.setIntensity(address, i); } delay(30); //change this to change fade down speed } clear_display(); //clear display completely (off) //reset intentsity to global val for (byte address = 0; address < 4; address++) { lc.setIntensity(address, intensity); } } //power up led test & display software version number void printver() { byte i = 0; char ver_a = "MADE"; char ver_b = "IN"; char ver_c = "RUSSIA"; //test all leds. for (byte x = 0; x <= 32; x++) { for (byte y = 0; y <= 7; y++) { plot(x, y, 1); } } delay(300); fade_down(); while (ver_a[i]) { puttinychar((i * 4), 1, ver_a[i]); delay(35); i++; } delay(500); fade_down(); i = 0; while (ver_b[i]) { puttinychar((i * 4), 1, ver_b[i]); delay(35); i++; } delay(500); fade_down(); i = 0; while (ver_c[i]) { puttinychar((i * 4), 1, ver_c[i]); delay(35); i++; } delay(500); fade_down(); } // puttinychar // Copy a 3x5 character glyph from the myfont data structure to display memory, with its upper left at the given coordinate // This is unoptimized and simply uses plot() to draw each dot. void puttinychar(byte x, byte y, char c) { byte dots; if (c >= "A" && c <= "Z" || (c >= "a" && c <= "z")) { c &= 0x1F; // A-Z maps to 1-26 } else if (c >= "0" && c <= "9") { c = (c - "0") + 32; } else if (c == " ") { c = 0; // space } else if (c == ".") { c = 27; // full stop } else if (c == ":") { c = 28; // colon } else if (c == "\"") { c = 29; // single quote mark } else if (c == "!") { c = 30; // single quote mark } else if (c == "?") { c = 31; // single quote mark } for (byte col = 0; col < 3; col++) { dots = pgm_read_byte_near(&mytinyfont[c]); for (char row = 0; row < 5; row++) { if (dots & (16 >> row)) plot(x + col, y + row, 1); else plot(x + col, y + row, 0); } } } void putnormalchar(byte x, byte y, char c) { byte dots; // if (c >= "A" && c <= "Z" || (c >= "a" && c <= "z")) { // c &= 0x1F; // A-Z maps to 1-26 // } if (c >= "A" && c <= "Z") { c &= 0x1F; // A-Z maps to 1-26 } else if (c >= "a" && c <= "z") { c = (c - "a") + 41; // A-Z maps to 41-67 } else if (c >= "0" && c <= "9") { c = (c - "0") + 31; } else if (c == " ") { c = 0; // space } else if (c == ".") { c = 27; // full stop } else if (c == "\"") { c = 28; // single quote mark } else if (c == ":") { c = 29; // clock_mode selector arrow } else if (c == ">") { c = 30; // clock_mode selector arrow } else if (c >= -80 && c <= -67) { c *= -1; } for (char col = 0; col < 5; col++) { dots = pgm_read_byte_near(&myfont[c]); for (char row = 0; row < 7; row++) { //check coords are on screen before trying to plot //if ((x >= 0) && (x <= 31) && (y >= 0) && (y <= 7)){ if (dots & (64 >> row)) { // only 7 rows. plot(x + col, y + row, 1); } else { plot(x + col, y + row, 0); } //} } } } //small_mode //show the time in small 3x5 characters with seconds display void small_mode() { char textchar; // the 16 characters on the display byte mins = 100; //mins byte secs = rtc; //seconds byte old_secs = secs; //holds old seconds value - from last time seconds were updated o display - used to check if seconds have changed cls(); //run clock main loop as long as run_mode returns true while (run_mode()) { get_time(); //check for button press if (buttonA.uniquePress()) { switch_mode(); return; } if (buttonB.uniquePress()) { display_date(); return; } //if secs changed then update them on the display secs = rtc; if (secs != old_secs) { //secs char buffer; itoa(secs, buffer, 10); //fix - as otherwise if num has leading zero, e.g. "03" secs, itoa coverts this to chars with space "3 ". if (secs < 10) { buffer = buffer; buffer = "0"; } puttinychar(20, 1, ":"); //seconds colon puttinychar(24, 1, buffer); //seconds puttinychar(28, 1, buffer); //seconds old_secs = secs; } //if minute changes change time if (mins != rtc) { //reset these for comparison next time mins = rtc; byte hours = rtc; if (hours > < 1) { hours = hours + ampm * 12; } //byte dow = rtc; // the DS1307 outputs 0 - 6 where 0 = Sunday0 - 6 where 0 = Sunday. //byte date = rtc; //set characters char buffer; itoa(hours, buffer, 10); //fix - as otherwise if num has leading zero, e.g. "03" hours, itoa coverts this to chars with space "3 ". if (hours < 10) { buffer = buffer; //if we are in 12 hour mode blank the leading zero. if (ampm) { buffer = " "; } else { buffer = "0"; } } //set hours chars textchar = buffer; textchar = buffer; textchar = ":"; itoa (mins, buffer, 10); if (mins < 10) { buffer = buffer; buffer = "0"; } //set mins characters textchar = buffer; textchar = buffer; //do seconds textchar = ":"; buffer; secs = rtc; itoa(secs, buffer, 10); //fix - as otherwise if num has leading zero, e.g. "03" secs, itoa coverts this to chars with space "3 ". if (secs < 10) { buffer = buffer; buffer = "0"; } //set seconds textchar = buffer; textchar = buffer; byte x = 0; byte y = 0; //print each char for (byte x = 0; x < 6 ; x++) { puttinychar(x * 4, 1, textchar[x]); } } delay(50); } fade_down(); } // basic_mode() // show the time in 5x7 characters void basic_mode() { cls(); char buffer; //for int to char conversion to turn rtc values into chars we can print on screen byte offset = 0; //used to offset the x postition of the digits and centre the display when we are in 12 hour mode and the clock shows only 3 digits. e.g. 3:21 byte x, y; //used to draw a clear box over the left hand "1" of the display when we roll from 12:59 -> 1:00am in 12 hour mode. //do 12/24 hour conversion if ampm set to 1 byte hours = rtc; if (hours > 12) { hours = hours - ampm * 12; } if (hours < 1) { hours = hours + ampm * 12; } //do offset conversion if (ampm && hours < 10) { offset = 2; } //set the next minute we show the date at //set_next_date(); // initially set mins to value 100 - so it wll never equal rtc on the first loop of the clock, meaning we draw the clock display when we enter the function byte secs = 100; byte mins = 100; int count = 0; //run clock main loop as long as run_mode returns true while (run_mode()) { //get the time from the clock chip get_time(); //check for button press if (buttonA.uniquePress()) { switch_mode(); return; } if (buttonB.uniquePress()) { display_date(); return; } //check whether it"s time to automatically display the date //check_show_date(); //draw the flashing: as on if the secs have changed. if (secs != rtc) { //update secs with new value secs = rtc; //draw: plot (15 - offset, 2, 1); //top point plot (15 - offset, 5, 1); //bottom point count = 400; } //if count has run out, turn off the: if (count == 0) { plot (15 - offset, 2, 0); //top point plot (15 - offset, 5, 0); //bottom point } else { count--; } //re draw the display if button pressed or if mins != rtc i.e. if the time has changed from what we had stored in mins, (also trigggered on first entering function when mins is 100) if (mins != rtc) { //update mins and hours with the new values mins = rtc; hours = rtc; //adjust hours of ampm set to 12 hour mode if (hours > 12) { hours = hours - ampm * 12; } if (hours < 1) { hours = hours + ampm * 12; } itoa(hours, buffer, 10); //if hours < 10 the num e.g. "3" hours, itoa coverts this to chars with space "3 " which we dont want if (hours < 10) { buffer = buffer; buffer = "0"; } //print hours //if we in 12 hour mode and hours < 10, then don"t print the leading zero, and set the offset so we centre the display with 3 digits. if (ampm && hours < 10) { offset = 2; //if the time is 1:00am clear the entire display as the offset changes at this time and we need to blank out the old 12:59 if ((hours == 1 && mins == 0)) { cls(); } } else { //else no offset and print hours tens digit offset = 0; //if the time is 10:00am clear the entire display as the offset changes at this time and we need to blank out the old 9:59 if (hours == 10 && mins == 0) { cls(); } putnormalchar(1, 0, buffer); } //print hours ones digit putnormalchar(7 - offset, 0, buffer); //print mins //add leading zero if mins < 10 itoa (mins, buffer, 10); if (mins < 10) { buffer = buffer; buffer = "0"; } //print mins tens and ones digits putnormalchar(19 - offset, 0, buffer); putnormalchar(25 - offset, 0, buffer); } } fade_down(); } //like basic_mode but with slide effect void slide() { byte digits_old = {99, 99, 99, 99}; //old values we store time in. Set to somthing that will never match the time initially so all digits get drawn wnen the mode starts byte digits_new; //new digits time will slide to reveal byte digits_x_pos = {25, 19, 7, 1}; //x pos for which to draw each digit at char old_char; //used when we use itoa to transpose the current digit (type byte) into a char to pass to the animation function char new_char; //used when we use itoa to transpose the new digit (type byte) into a char to pass to the animation function //old_chars - stores the 5 day and date suffix chars on the display. e.g. "mon" and "st". We feed these into the slide animation as the current char when these chars are updated. //We sent them as A initially, which are used when the clocl enters the mode and no last chars are stored. //char old_chars = "AAAAA"; //plot the clock colon on the display cls(); putnormalchar(13, 0, ":"); byte old_secs = rtc; //store seconds in old_secs. We compare secs and old secs. WHen they are different we redraw the display //run clock main loop as long as run_mode returns true while (run_mode()) { get_time(); //check for button press if (buttonA.uniquePress()) { switch_mode(); return; } if (buttonB.uniquePress()) { display_date(); return; } //if secs have changed then update the display if (rtc != old_secs) { old_secs = rtc; //do 12/24 hour conversion if ampm set to 1 byte hours = rtc; if (hours > 12) { hours = hours - ampm * 12; } if (hours < 1) { hours = hours + ampm * 12; } //split all date and time into individual digits - stick in digits_new array //rtc = secs //array pos and digit stored //digits_new = (rtc%10); //0 - secs ones //digits_new = ((rtc/10)%10); //1 - secs tens //rtc = mins digits_new = (rtc % 10); //2 - mins ones digits_new = ((rtc / 10) % 10); //3 - mins tens //rtc = hours digits_new = (hours % 10); //4 - hour ones digits_new = ((hours / 10) % 10); //5 - hour tens //rtc = date //digits_new = (rtc%10); //6 - date ones //digits_new = ((rtc/10)%10); //7 - date tens //draw initial screen of all chars. After this we just draw the changes. //compare digits 0 to 3 (mins and hours) for (byte i = 0; i <= 3; i++) { //see if digit has changed... if (digits_old[i] != digits_new[i]) { //run 9 step animation sequence for each in turn for (byte seq = 0; seq <= 8 ; seq++) { //convert digit to string itoa(digits_old[i], old_char, 10); itoa(digits_new[i], new_char, 10); //if set to 12 hour mode and we"re on digit 2 (hours tens mode) then check to see if this is a zero. If it is, blank it instead so we get 2.00pm not 02.00pm if (ampm && i == 3) { if (digits_new == 0) { new_char = " "; } if (digits_old == 0) { old_char = " "; } } //draw the animation frame for each digit slideanim(digits_x_pos[i], 0, seq, old_char, new_char); delay(SLIDE_DELAY); } } } /* //compare date digit 6 (ones) and (7) tens - if either of these change we need to update the date line. We compare date tens as say from Jan 31 -> Feb 01 then ones digit doesn"t change if ((digits_old != digits_new) || (digits_old != digits_new)) { //change the day shown. Loop below goes through each of the 3 chars in turn e.g. "MON" for (byte day_char = 0; day_char <=2 ; day_char++){ //run the anim sequence for each char for (byte seq = 0; seq <=8 ; seq++){ //the day (0 - 6) Read this number into the days char array. the seconds number in the array 0-2 gets the 3 chars of the day name, e.g. m o n slideanim(6*day_char,8,seq,old_chars,days); //6 x day_char gives us the x pos for the char delay(SLIDE_DELAY); } //save the old day chars into the old_chars array at array pos 0-2. We use this next time we change the day and feed it to the animation as the current char. The updated char is fed in as the new char. old_chars = days; } //change the date tens digit (if needed) and ones digit. (the date ones digit wil alwaus change, but putting this in the "if" loop makes it a bit neater code wise.) for (byte i = 7; i >= 6; i--){ if (digits_old[i] != digits_new[i]) { for (byte seq = 0; seq <=8 ; seq++){ itoa(digits_old[i],old_char,10); itoa(digits_new[i],new_char,10); slideanim(digits_x_pos[i],8,seq,old_char,new_char); delay(SLIDE_DELAY); } } } //print the day suffix "nd" "rd" "th" etc. First work out date 2 letter suffix - eg st, nd, rd, th byte s = 3; //the pos to read our suffix array from. byte date = rtc; if(date == 1 || date == 21 || date == 31) { s = 0; } else if (date == 2 || date == 22) { s = 1; } else if (date == 3 || date == 23) { s = 2; } for (byte suffix_char = 0; suffix_char <=1 ; suffix_char++){ for (byte seq = 0; seq <=8 ; seq++){ slideanim((suffix_char*6)+36,8,seq,old_chars,suffix[s]); // we pass in the old_char array char as the current char and the suffix array as the new char delay(SLIDE_DELAY); } //save the suffic char in the old chars array at array pos 3 and 5. We use these chars next time we change the suffix and feed it to the animation as the current char. The updated char is fed in as the new char. old_chars = suffix[s]; } }//end do date line */ //save digita array tol old for comparison next loop for (byte i = 0; i <= 3; i++) { digits_old[i] = digits_new[i]; } }//secs/oldsecs }//while loop fade_down(); } //called by slide //this draws the animation of one char sliding on and the other sliding off. There are 8 steps in the animation, we call the function to draw one of the steps from 0-7 //inputs are are char x and y, animation frame sequence (0-7) and the current and new chars being drawn. void slideanim(byte x, byte y, byte sequence, char current_c, char new_c) { // To slide one char off and another on we need 9 steps or frames in sequence... // seq# 0123456 <-rows of the display // | ||||||| // seq0 0123456 START - all rows of the display 0-6 show the current characters rows 0-6 // seq1 012345 current char moves down one row on the display. We only see it"s rows 0-5. There are at display positions 1-6 There is a blank row inserted at the top // seq2 6 01234 current char moves down 2 rows. we now only see rows 0-4 at display rows 2-6 on the display. Row 1 of the display is blank. Row 0 shows row 6 of the new char // seq3 56 0123 // seq4 456 012 half old / half new char // seq5 3456 01 // seq6 23456 0 // seq7 123456 // seq8 0123456 END - all rows show the new char //from above we can see... //currentchar runs 0-6 then 0-5 then 0-4 all the way to 0. starting Y position increases by 1 row each time. //new char runs 6 then 5-6 then 4-6 then 3-6. starting Y position increases by 1 row each time. //if sequence number is below 7, we need to draw the current char if (sequence < 7) { byte dots; // if (current_c >= "A" && || (current_c >= "a" && current_c <= "z")) { // current_c &= 0x1F; // A-Z maps to 1-26 // } if (current_c >= "A" && current_c <= "Z") { current_c &= 0x1F; // A-Z maps to 1-26 } else if (current_c >= "a" && current_c <= "z") { current_c = (current_c - "a") + 41; // A-Z maps to 41-67 } else if (current_c >= "0" && current_c <= "9") { current_c = (current_c - "0") + 31; } else if (current_c == " ") { current_c = 0; // space } else if (current_c == ".") { current_c = 27; // full stop } else if (current_c == "\"") { current_c = 28; // single quote mark } else if (current_c == ":") { current_c = 29; //colon } else if (current_c == ">") { current_c = 30; // clock_mode selector arrow } byte curr_char_row_max = 7 - sequence; //the maximum number of rows to draw is 6 - sequence number byte start_y = sequence; //y position to start at - is same as sequence number. We inc this each loop //plot each row up to row maximum (calculated from sequence number) for (byte curr_char_row = 0; curr_char_row <= curr_char_row_max; curr_char_row++) { for (byte col = 0; col < 5; col++) { dots = pgm_read_byte_near(&myfont); if (dots & (64 >> curr_char_row)) plot(x + col, y + start_y, 1); //plot led on else plot(x + col, y + start_y, 0); //else plot led off } start_y++;//add one to y so we draw next row one down } } //draw a blank line between the characters if sequence is between 1 and 7. If we don"t do this we get the remnants of the current chars last position left on the display if (sequence >= 1 && sequence <= 8) { for (byte col = 0; col < 5; col++) { plot(x + col, y + (sequence - 1), 0); //the y position to draw the line is equivalent to the sequence number - 1 } } //if sequence is above 2, we also need to start drawing the new char if (sequence >= 2) { //work out char byte dots; //if (new_c >= "A" && new_c <= "Z" || (new_c >= "a" && new_c <= "z")) { // new_c &= 0x1F; // A-Z maps to 1-26 //} if (new_c >= "A" && new_c <= "Z") { new_c &= 0x1F; // A-Z maps to 1-26 } else if (new_c >= "a" && new_c <= "z") { new_c = (new_c - "a") + 41; // A-Z maps to 41-67 } else if (new_c >= "0" && new_c <= "9") { new_c = (new_c - "0") + 31; } else if (new_c == " ") { new_c = 0; // space } else if (new_c == ".") { new_c = 27; // full stop } else if (new_c == "\"") { new_c = 28; // single quote mark } else if (new_c == ":") { new_c = 29; // clock_mode selector arrow } else if (new_c == ">") { new_c = 30; // clock_mode selector arrow } byte newcharrowmin = 6 - (sequence - 2); //minimumm row num to draw for new char - this generates an output of 6 to 0 when fed sequence numbers 2-8. This is the minimum row to draw for the new char byte start_y = 0; //y position to start at - is same as sequence number. we inc it each row //plot each row up from row minimum (calculated by sequence number) up to 6 for (byte newcharrow = newcharrowmin; newcharrow <= 6; newcharrow++) { for (byte col = 0; col < 5; col++) { dots = pgm_read_byte_near(&myfont); if (dots & (64 >> newcharrow)) plot(x + col, y + start_y, 1); //plot led on else plot(x + col, y + start_y, 0); //else plot led off } start_y++;//add one to y so we draw next row one down } } } //print a clock using words rather than numbers void word_clock() { cls(); char numbers = { "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen" }; char numberstens = { "ten", "twenty", "thirty", "forty", "fifty" }; //potentially 3 lines to display char str_a; char str_b; char str_c; //byte hours_y, mins_y; //hours and mins and positions for hours and mins lines byte hours = rtc; if (hours > 12) { hours = hours - ampm * 12; } if (hours < 1) { hours = hours + ampm * 12; } get_time(); //get the time from the clock chip byte old_mins = 100; //store mins in old_mins. We compare mins and old mins & when they are different we redraw the display. Set this to 100 initially so display is drawn when mode starts. byte mins; //run clock main loop as long as run_mode returns true while (run_mode()) { //check for button press if (buttonA.uniquePress()) { switch_mode(); return; } if (buttonB.uniquePress()) { display_date(); } get_time(); //get the time from the clock chip mins = rtc; //get mins //if mins is different from old_mins - redraw display if (mins != old_mins) { //update old_mins with current mins value old_mins = mins; //reset these for comparison next time mins = rtc; hours = rtc; //make hours into 12 hour format if (hours > 12) { hours = hours - 12; } if (hours == 0) { hours = 12; } //split mins value up into two separate digits int minsdigit = rtc % 10; byte minsdigitten = (rtc / 10) % 10; //if mins <= 10 , then top line has to read "minsdigti past" and bottom line reads hours if (mins < 10) { strcpy (str_a, numbers); strcpy (str_b, "PAST"); strcpy (str_c, numbers); } //if mins = 10, cant use minsdigit as above, so soecial case to print 10 past /n hour. if (mins == 10) { strcpy (str_a, numbers); strcpy (str_b, " PAST"); strcpy (str_c, numbers); } //if time is not on the hour - i.e. both mins digits are not zero, //then make first line read "hours" and 2 & 3rd lines read "minstens" "mins" e.g. "three /n twenty /n one" else if (minsdigitten != 0 && minsdigit != 0) { strcpy (str_a, numbers); //if mins is in the teens, use teens from the numbers array for the 2nd line, e.g. "fifteen" //if (mins >= 11 && mins <= 19) { if (mins <= 19) { strcpy (str_b, numbers); } else { strcpy (str_b, numberstens); strcpy (str_c, numbers); } } // if mins digit is zero, don"t print it. read read "hours" "minstens" e.g. "three /n twenty" else if (minsdigitten != 0 && minsdigit == 0) { strcpy (str_a, numbers); strcpy (str_b, numberstens); strcpy (str_c, ""); } //if both mins are zero, i.e. it is on the hour, the top line reads "hours" and bottom line reads "o"clock" else if (minsdigitten == 0 && minsdigit == 0) { strcpy (str_a, numbers); strcpy (str_b, "O"CLOCK"); strcpy (str_c, ""); } }//end worknig out time //run in a loop //print line a "twelve" byte len = 0; while (str_a) { len++; }; //get length of message byte offset_top = (31 - ((len - 1) * 4)) / 2; // //plot hours line byte i = 0; while (str_a[i]) { puttinychar((i * 4) + offset_top, 1, str_a[i]); i++; } //hold display but check for button presses int counter = 1000; while (counter > 0){ //check for button press if (buttonA.uniquePress()) { switch_mode(); return; } if (buttonB.uniquePress()) { display_date(); } delay(1); counter--; } fade_down(); //print line b len = 0; while (str_b) { len++; }; //get length of message offset_top = (31 - ((len - 1) * 4)) / 2; i = 0; while (str_b[i]) { puttinychar((i * 4) + offset_top, 1, str_b[i]); i++; } //hold display but check for button presses counter = 1000; while (counter > 0){ if (buttonA.uniquePress()) { switch_mode(); return; } if (buttonB.uniquePress()) { display_date(); } delay(1); counter--; } fade_down(); //print line c if there. len = 0; while (str_c) { len++; }; //get length of message offset_top = (31 - ((len - 1) * 4)) / 2; i = 0; while (str_c[i]) { puttinychar((i * 4) + offset_top, 1, str_c[i]); i++; } counter = 1000; while (counter > 0){ //check for button press if (buttonA.uniquePress()) { switch_mode(); return; } if (buttonB.uniquePress()) { display_date(); } delay(1); counter--; } fade_down(); //hold display blank but check for button presses before starting again. counter = 1000; while (counter > 0){ //check for button press if (buttonA.uniquePress()) { switch_mode(); return; } if (buttonB.uniquePress()) { display_date(); } delay(1); counter--; } } fade_down(); } /// scroll message - not used at present - too slow. void scroll() { char message = {"Hello There "}; cls(); byte p = 6; //current pos in string byte chara = {0, 1, 2, 3, 4, 5}; //chars from string int x = {0, 6, 12, 18, 24, 30}; //xpos for each char byte y = 0; //y pos // clear_buffer(); while (message[p] != "\0") { //draw all 6 chars for (byte c = 0; c < 6; c++) { putnormalchar(x[c],y,message[ chara[c] ]); //draw a line of pixels turned off after each char,otherwise the gaps between the chars have pixels left in them from the previous char for (byte yy = 0 ; yy < 8; yy ++) { plot(x[c] + 5, yy, 0); } //take one off each chars position x[c] = x[c] - 1; } //reset a char if it"s gone off screen for (byte i = 0; i <= 5; i++) { if (x[i] < -5) { x[i] = 31; chara[i] = p; p++; } } } } //display_date - print the day of week, date and month with a flashing cursor effect void display_date() { cls(); //read the date from the DS1307 byte dow = rtc; // day of week 0 = Sunday byte date = rtc; byte month = rtc - 1; //array of month names to print on the display. Some are shortened as we only have 8 characters across to play with char monthnames = { "January", "February", "March", "April", "May", "June", "July", "August", "Sept", "October", "November", "December" }; //print the day name //get length of text in pixels, that way we can centre it on the display by divindin the remaining pixels b2 and using that as an offset byte len = 0; while(daysfull) { len++; }; byte offset = (31 - ((len-1)*4)) / 2; //our offset to centre up the text //print the name int i = 0; while(daysfull[i]) { puttinychar((i*4) + offset , 1, daysfull[i]); i++; } delay(1000); fade_down(); cls(); // print date numerals char buffer; itoa(date,buffer,10); offset = 10; //offset to centre text if 3 chars - e.g. 3rd // first work out date 2 letter suffix - eg st, nd, rd, th etc // char suffix={"st", "nd", "rd", "th" }; is defined at top of code byte s = 3; if(date == 1 || date == 21 || date == 31) { s = 0; } else if (date == 2 || date == 22) { s = 1; } else if (date == 3 || date == 23) { s = 2; } //print the 1st date number puttinychar(0+offset, 1, buffer); //if date is under 10 - then we only have 1 digit so set positions of sufix etc one character nearer byte suffixposx = 4; //if date over 9 then print second number and set xpos of suffix to be 1 char further away if (date > 9){ suffixposx = 8; puttinychar(4+offset, 1, buffer); offset = 8; //offset to centre text if 4 chars } //print the 2 suffix characters puttinychar(suffixposx+offset, 1, suffix[s]); puttinychar(suffixposx+4+offset, 1, suffix[s]); delay(1000); fade_down(); //print the month name //get length of text in pixels, that way we can centre it on the display by divindin the remaining pixels b2 and using that as an offset len = 0; while(monthnames) { len++; }; offset = (31 - ((len-1)*4)) / 2; //our offset to centre up the text i = 0; while(monthnames[i]) { puttinychar((i*4) +offset, 1, monthnames[i]); i++; } delay(1000); fade_down(); } //dislpay menu to change the clock mode void switch_mode() { //remember mode we are in. We use this value if we go into settings mode, so we can change back from settings mode (6) to whatever mode we were in. old_mode = clock_mode; char* modes = { "Basic", "Small", "Slide", "Words", "Setup" }; byte next_clock_mode; byte firstrun = 1; //loop waiting for button (timeout after 35 loops to return to mode X) for (int count = 0; count < 35 ; count++) { //if user hits button, change the clock_mode if (buttonA.uniquePress() || firstrun == 1) { count = 0; cls(); if (firstrun == 0) { clock_mode++; } if (clock_mode > NUM_DISPLAY_MODES + 1) { clock_mode = 0; } //print arrown and current clock_mode name on line one and print next clock_mode name on line two char str_top; //strcpy (str_top, "-"); strcpy (str_top, modes); next_clock_mode = clock_mode + 1; if (next_clock_mode > NUM_DISPLAY_MODES + 1) { next_clock_mode = 0; } byte i = 0; while (str_top[i]) { putnormalchar(i * 6, 0, str_top[i]); i++; } firstrun = 0; } delay(50); } } //run clock main loop as long as run_mode returns true byte run_mode() { //if random mode is on... check the hour when we change mode. if (random_mode) { //if hour value in change mode time = hours. then reurn false = i.e. exit mode. if (change_mode_time == rtc) { //set the next random clock mode and time to change it set_next_random(); //exit the current mode. return 0; } } //else return 1 - keep running in this mode return 1; } //set the next hour the clock will change mode when random mode is on void set_next_random() { //set the next hour the clock mode will change - current time plus 1 - 4 hours get_time(); change_mode_time = rtc + random (1, 5); //if change_mode_time now happens to be over 23, then set it to between 1 and 3am if (change_mode_time > 23) { change_mode_time = random (1, 4); } //set the new clock mode clock_mode = random(0, NUM_DISPLAY_MODES + 1); //pick new random clock mode } //dislpay menu to change the clock settings void setup_menu() { char* set_modes = { "Rndom", "24 Hr","Set", "Brght", "Exit"}; if (ampm == 0) { set_modes = ("12 Hr"); } byte setting_mode = 0; byte next_setting_mode; byte firstrun = 1; //loop waiting for button (timeout after 35 loops to return to mode X) for(int count=0; count < 35 ; count++) { //if user hits button, change the clock_mode if(buttonA.uniquePress() || firstrun == 1){ count = 0; cls(); if (firstrun == 0) { setting_mode++; } if (setting_mode > NUM_SETTINGS_MODES) { setting_mode = 0; } //print arrown and current clock_mode name on line one and print next clock_mode name on line two char str_top; strcpy (str_top, set_modes); next_setting_mode = setting_mode + 1; if (next_setting_mode > NUM_SETTINGS_MODES) { next_setting_mode = 0; } byte i = 0; while(str_top[i]) { putnormalchar(i*6, 0, str_top[i]); i++; } firstrun = 0; } delay(50); } //pick the mode switch(setting_mode){ case 0: set_random(); break; case 1: set_ampm(); break; case 2: set_time(); break; case 3: set_intensity(); break; case 4: //exit menu break; } //change the clock from mode 6 (settings) back to the one it was in before clock_mode=old_mode; } //toggle random mode - pick a different clock mode every few hours void set_random(){ cls(); char text_a = "Off"; char text_b = "On"; byte i = 0; //if random mode is on, turn it off if (random_mode){ //turn random mode off random_mode = 0; //print a message on the display while(text_a[i]) { putnormalchar((i*6), 0, text_a[i]); i++; } } else { //turn randome mode on. random_mode = 1; //set hour mode will change set_next_random(); //print a message on the display while(text_b[i]) { putnormalchar((i*6), 0, text_b[i]); i++; } } delay(1500); //leave the message up for a second or so } //set 12 or 24 hour clock void set_ampm() { // AM/PM or 24 hour clock mode - flip the bit (makes 0 into 1, or 1 into 0 for ampm mode) ampm = (ampm ^ 1); cls(); } //change screen intensityintensity void set_intensity() { cls(); byte i = 0; char text = "Bright"; while(text[i]) { puttinychar((i*4)+4, 0, text[i]); i++; } //wait for button input while (!buttonA.uniquePress()) { levelbar (0,6,(intensity*2)+2,2); //display the intensity level as a bar while (buttonB.isPressed()) { if(intensity == 15) { intensity = 0; cls (); } else { intensity++; } //print the new value i = 0; while(text[i]) { puttinychar((i*4)+4, 0, text[i]); i++; } //display the intensity level as a bar levelbar (0,6,(intensity*2)+2,2); //change the brightness setting on the displays for (byte address = 0; address < 4; address++) { lc.setIntensity(address, intensity); } delay(150); } } } // display a horizontal bar on the screen at offset xposr by ypos with height and width of xbar, ybar void levelbar (byte xpos, byte ypos, byte xbar, byte ybar) { for (byte x = 0; x < xbar; x++) { for (byte y = 0; y <= ybar; y++) { plot(x+xpos, y+ypos, 1); } } } //set time and date routine void set_time() { cls(); //fill settings with current clock values read from clock get_time(); byte set_min = rtc; byte set_hr = rtc; byte set_date = rtc; byte set_mnth = rtc; int set_yr = rtc; //Set function - we pass in: which "set" message to show at top, current value, reset value, and rollover limit. set_date = set_value(2, set_date, 1, 31); set_mnth = set_value(3, set_mnth, 1, 12); set_yr = set_value(4, set_yr, 2013, 2099); set_hr = set_value(1, set_hr, 0, 23); set_min = set_value(0, set_min, 0, 59); ds1307.adjust(DateTime(set_yr, set_mnth, set_date, set_hr, set_min)); cls(); } //used to set min, hr, date, month, year values. pass //message = which "set" message to print, //current value = current value of property we are setting //reset_value = what to reset value to if to rolls over. E.g. mins roll from 60 to 0, months from 12 to 1 //rollover limit = when value rolls over int set_value(byte message, int current_value, int reset_value, int rollover_limit){ cls(); char messages = { "Set Mins", "Set Hour", "Set Day", "Set Mnth", "Set Year"}; //Print "set xyz" top line byte i = 0; while(messages[i]) { puttinychar(i*4 , 1, messages[i]); i++; } delay(2000); cls(); //print digits bottom line char buffer = " "; itoa(current_value,buffer,10); puttinychar(0 , 1, buffer); puttinychar(4 , 1, buffer); puttinychar(8 , 1, buffer); puttinychar(12, 1, buffer); delay(300); //wait for button input while (!buttonA.uniquePress()) { while (buttonB.isPressed()){ if(current_value < rollover_limit) { current_value++; } else { current_value = reset_value; } //print the new value itoa(current_value, buffer ,10); puttinychar(0 , 1, buffer); puttinychar(4 , 1, buffer); puttinychar(8 , 1, buffer); puttinychar(12, 1, buffer); delay(150); } } return current_value; } void get_time() { //get time DateTime now = ds1307.now(); //save time to array rtc = now.year(); rtc = now.month(); rtc = now.day(); rtc = now.dayOfWeek(); //returns 0-6 where 0 = Sunday rtc = now.hour(); rtc = now.minute(); rtc = now.second(); //flash arduino led on pin 13 every second //if ((rtc % 2) == 0) { // digitalWrite(13, HIGH); //} //else { // digitalWrite(13, LOW); //} //print the time to the serial port - useful for debuging RTC issues /* Serial.print(rtc); Serial.print(":"); Serial.print(rtc); Serial.print(":"); Serial.println(rtc); */ }

Теперь для завершения работы над устройством потребуется выполнить лишь ряд простых операций:


Компиляция программного кода и дальнейшая загрузка в память микроконтроллера займёт некоторое время, обычно не более одной минуты. Об успешном завершении операции будет сообщено в консоли Arduino IDE. После чего остаётся лишь перезагрузить Arduino с помощью кнопки Reset на устройстве - простые часы на светодиодных матрицах готовы!

Готовые часы на Arduino

Настройка часов осуществляется с помощью двух кнопок. Устройство поддерживает 12- и 24-часовой формат вывода времени, показ даты и дня недели, отображение времени с секундами и без. Также имеется возможность менять яркость свечения светодиодов.


Вероятно, в дальнейшем вам захочется добавить больше функций (например, термометр), или же установить устройство в корпус собственного дизайна - хороших результатов можно добиться с помощью изготовления на станках с лазерной резкой. Но уже сейчас вы сможете смело сказать, что собрали полноценные электронные часы своими руками!