Пример шифрования rsa с подробным описанием. RSA-шифрование. Описание и реализация алгоритма RSA. Демо-программа на базе алгоритма RSA

Допустим, что объект А хочет передать сообщение объекту В в зашифрованном виде. Для этого используем алгоритм RSA. При передаче могут возникнут проблемы из-за или плохую . Для этого нужно использовать методы обнаружения ошибок . Но для разных сетей разные методы.

  • объект В придумывает два любых больших простых числа Р и Q;
  • объект В решает значение модуля N = P × Q;
  • объект В решает функцию Эйлера:φ(N) = (P-1) × (Q-1) ;
    и выбирает любым образом значение открытого ключа K в с учетом условия:1 < K в ≤ φ(N), НОД (K в, φ(N)) = 1
  • объект В решает значение секретного ключа κ в решая алгоритм Евклида когда достигается условие: κ в ≡ K в -1 (mod φ(N)).
  • объект В передает объекту А пару числе (N, K в) по незащищенному пути.
  • Если объект А хочет передать объекту В сообщение М , он должен разбить исходный открытый текст M на блоки, каждый из которых может быть показан в виде: M i = 0, 1, 2, …, N — 1 .
  • Объект А шифрует данные, показаны в виде последовательности чисел M i по формуле: C i = M i K в (mod N) , и отправляет криптограмму C 1 , C 2 , …, C i … объекту В.
  • Пользователь В расшифровывает криптограмму C 1 , C 2 , …, C i … используя секретный ключ κ в по формуле: M i = C i K в (mod N)

При реализации алгоритма на практике, нужно иметь возможность без сильных затрат генерировать большие простые числа, к тому же быстро решать значение ключей.

Пример: шифрование сообщения

Для наглядности вычисления, будем использовать небольшие числа. Но на практике используют очень большие числа (длиной 200-300 десятичных разрядов).

Действия объекта В:

  • Берет Р = 3, Q = 11.
  • Берет модуль N = P × Q = 3 × 11 = 33.
  • Берет значение функции Эйлера для N = 33: φ(N) = (P-1) × (Q-1) = 2 × 10 = 20.
  • Берет в качестве открытого ключа K в произвольное число с учетом условия: 1 < K в ≤ φ(N), НОД (K в, φ(N)) = 1 , допустим K в = 7.
  • Решаем значение секретного ключа κ в используя алгоритм Евклида: κ в ≡ = 3.
  • объект В передает объекту А пару чисел (N = 33, K в = 7).

Действия объекта A:

  • Показывает шифруемое сообщение как последовательность целых чисел в диапазоне 0…32. Допустим буква А представляется как число 1, буква В это 2 и С = 3. Припустим что сообщение С А В можно показать как последовательность числе 321, то есть M 1 = 3, M 2 = 1, M 3 = 2.
  • Шифрует сообщение, М используя ключ K в = 7 и N = 33 по формуле: C i = M i K в (mod N) = M i 7 (mod 3).
  • Получаем:
    • C i = 3 7 (mod 33) = 2187 (mod 33) = 9
    • C i = 1 7 (mod 33) = 1 (mod 33) = 1
    • C i = 2 7 (mod 33) = 128 (mod 33) = 29
  • Передает объекту В криптограмму: C 1 , C 2 , C 3 = 9, 1, 29.

Действия объекта B:

  • Расшифровывает принятую криптограмму C 1 , C 2 , C 3 используя секретный ключ ≡ = 3 по формуле:M i = C i K в (mod N) = C i 3 (mod 3)
    • M 1 = 9 3 (mod 33) = 729 (mod 33) =3.
    • M 2 = 1 3 (mod 33) = 1 (mod 33) =1.
    • M 2 = 29 3 (mod 33) = 24389 (mod 33) =2.

Объект получил исходное сообщение, которое послал объект A.

Шифрование с помощью RSA есть одним из при передачи данных через сеть Интернет. Схема Рабина очень похожа на схему RSA. Криптоалгоритм RSA признан стойким при дине ключа больше 1024 бит. Нужно отметить что алгоритм применяют как для шифрования так и для электронно-цифровой подписи. Нетрудно заметить что в асимметричной криптосистеме RSA количество ключей связано с количеством пользователей линейной зависимостью (N пользователей используют 2 × N ключей), а не квадратичной как это используется в симметричных системах.

Под катом описаны примеры выбора «плохих» параметров шифра RSA.

«Следует подчеркнуть необходимость соблюдения осторожности в выборе модуля RSA (числа n ) для каждого из корреспондентов сети. В связи с этим можно сказать следующее. Читатель может самостоятельно убедиться в том, что зная одну из трех величин p , q или φ(n) , можно легко найти секретный ключ RSA…».

Дополним этот текст. При неудачном выборе модуля шифра RSA, как это сделано в примере пособия, приводимом ниже, можно дешифровать текст и без наличия секретного ключа, т.е. не зная ни одной из трех названных величин.

Для этого достаточно располагать зашифрованным текстом, заданным модулем шифра n , открытым ключом е шифра и выполнить всего три шага атаки «бесключевого чтения». После четвертого атакующего шага устанавливается, что на предыдущем шаге был получен исходный текст, он может быть прочитан. Покажем, насколько просто это делается.

Вначале приведем сам пример со стр. 313-315 из названного пособия.

Пример

Шифрование короткого исходного текстового сообщения: RSA .
Получатель устанавливает шифр с характеристиками n=pq=527 , где р=17 , q=31 и φ(n)=(р –1)(q – 1)=480 . В качестве открытого ключа е выбрано число, взаимно простое с φ(n) , е=7 . Для этого числа с помощью расширенного алгоритма Евклида найдены целые числа u и v , удовлетворяющие соотношению е∙u+φ(n)∙v=1 :

480=7∙68+4,
7=4∙1+3,
4=3∙1+1,
1=4–3∙1=4–(7–4∙1)∙1=4∙2–7∙1=(480–7∙68)∙2–7∙1=480∙2–7∙137,
v=2, u=–137
.

Поскольку –137≡343(mod480) , то d=343 .

Проверка: 7∙343=2401≡1(mod480) .

Текстовое сообщение представляется в виде последовательности чисел, содержащихся в интервале . Для этого буквы R , S и A кодируются пятиразрядными двоичными числами. Используются порядковые номера этих букв в английском алфавите при их двоичном представлении:

R=18 10 =(10010) 2 , S=19 10 =(10011) 2 ,
A=1 10 =(00001) 2 .

Тогда RSA=(100101001100001) 2 . Разбиение текста на блоки ограниченной длины дает представление из двух блоков: RSA=(100101001), (100001)=(М 1 =297, М 2 =33) .

Последовательно шифруются блоки исходного текста М 1 =297 , М 2 =33 :
y 1 =Е k (М 1)=М 1 e ≡297 7 (mod527)=474 .

Здесь воспользовались тем, что:

297 7 =((297 2) 3)297≡(mod527)=(200 3 (mod527)297)(mod527)=474 ,
y 2 =Е k (М 2)=M 2 e ≡33 7 (mod527)=407 .

Шифрованный текст, как и исходный, получаем в виде двух блоков: у 1 =474 ; у 2 =407 .

Расшифрование представляется последовательностью действий D k (y i)=(y i) d =(y i) 343 (mod 527) , i=1,2 .

Вычисления возведения в степень d более удобно проводить, предварительно представляя показатель степени суммой степеней числа 2 , а именно: 343=256+64+16+4+2+1 .

Используя это представление показателя степени d=343 , получаем:

474 2 ≡174(mod527),
474 4 ≡237(mod527),
474 8 ≡307(mod527),
474 16 ≡443(mod527),
474 32 ≡205(mod527),
474 64 ≡392(mod527),
474 128 ≡307(mod527),
474 256 ≡443(mod527),

и окончательно 474 343 (mod527)=(443∙392∙443∙237∙174∙474) (mod527)=297 .

Аналогично вычисляется значение 407 343 (mod527)=33 .

Переход к буквенному представлению расшифрованного сообщения дает: RSA .

После рассмотрения примера в пособии приводятся рассуждения о стойкости системы RSA. Подчеркивается необходимость соблюдения осторожности в выборе модуля шифра RSA (числа n ) для каждого из корреспондентов сети. Указывается на недопустимость игнорирования требований к выбираемым характеристикам системы шифрования. Среди таких требований, к сожалению, не указано то, нарушение которого иллюстрирует приведенный пример.

Атака на шифр RSA

Рассмотрим пример атаки на шифр RSA. Воспользуемся данными примера, приведенного на странице 313-315 в учебном пособии «Основы криптографии» А.П. Алферов, А.Ю. Зубов, А.С. Кузьмин, А.В. Черемушкин, Москва. «Гелиос АРВ», 2001.

Неудачность (недопустимость) выбранных параметров системы в этом примере легко показывается вычислениями, реализующими атаку бесключевого чтения исходного текста. Сущность такой атаки состоит в следующем. Заданы открытый ключ шифра RSA (е=7 , n=527 ) и шифрованный текст. В примере шифрованный текст представлен двумя блоками
у=(у 1 =474, у 2 =407) .

Каждый шифрованный блок атакуется индивидуально, вначале атакуем у 1 =474 , после его дешифрования, атакуем другой блок у 2 =407 .

Далее формируется путем многократного зашифрования с сохранением результатов двух последовательных шагов алгоритма атаки и с использованием открытого ключа последовательность числовых значений у i , у 1 =у имеющийся шифрованный текст.

В алгоритме атаки на шифрованный текст определяется такой номер шага j , для которого y i e j (mod n)=(y i e j–1 (mod n)) e (mod n)=y i , i>1 . Из последнего соотношения видим, что при возведении в степень е значения (y i e j–1 (mod n)) получается начальный шифoртекст y i = у 1 .

Но это и означает, что на этом шаге шифровался открытый текст. Непосредственными вычислениями (их оказывается совсем немного) с использованием экранного калькулятора находим то значение j , при котором цикл шифрования завершается значением y 1 , с которого цикл и был начат.

Атака на первый блок у 1 =474 шифртекста.
Шаг 1 :   474 7 (mod527)=382 ;
Шаг 2 :   382 7 (mod527)=423 ;
Шаг 3 :   423 7 (mod527)=297 ;
Шаг 4 :   на этом шаге шифруется уже найденный исходный текст, но его необходимо выполнить, так как атакующий исходного текста не знает. Признаком завершения атаки является совпадение начального значения шифртекста (474 ) и результата 4-го шага зашифрования. Именно такое совпадение и имеет место.

297 7 (mod527)=474 получили начальный (первый) блок шифртекста. Атака на первый блок завершена успешно у 1 =474 . Предшествующий результат шага 3 равен открытому тексту М 1 =297 .

n=527 r=297 по модулю n=527 . Это записывается так y i =у 1 =297 . Формируем степенные вычеты
(((297 7 (mod527)) 7 (mod527)) 7 (mod527)) 7 =297 .

Атака на второй блок у 2 =407 шифртекста.
Шаг 1 :   407 7 (mod527)=16 ;
Шаг 2 :   16 7 (mod527)=101 ;
Шаг 3 :   101 7 (mod527)=33 ;
Шаг 4 :   33 7 (mod527)=407 .

Вновь на третьем шаге получен блок исходного текста (М 2 =33 ), но атакующему это неизвестно, и он выполняет следующий (четвертый шаг), результат которого (407 ) совпадает с начальным шифртекстом у 2 =407 .

По существу в кольце вычетов по модулю n=527 реализовался короткий цикл обработки вычета r=33 по модулю n=527 . Это записывается так y i =у 2 =33 .
Формируем степенные вычеты ((33 7 (mod527)) 7 (mod527)) 7 (mod527)=33 .

Результат атаки (исходный текст М 1 =297 , М 2 =33 ) получен трехкратным шифрованием заданного шифртекста. Больший успех для атакующего шифртекст трудно представить.

Продолжая обсуждение вопроса о выборе модуля и других параметров шифра, можно добавить, что модуль шифра (n=527 ) некоторые исходные тексты вообще не позволяет шифровать. При этом выбор значения открытого ключа е большой роли не играет. Существуют значения исходных текстов, которые вообще невозможно зашифровать выбранным шифром с модулем n=527 .

Ни на одном из заданных е не удается зашифровать исходные тексты, представляемые числами
187 , 341 , 154 и 373 .

Пример (невозможность шифрования значений некоторых исходных текстов)

Пусть исходные тексты представлены четырьмя блоками y=(y 1 =154, y 2 =187, y 3 =341, y 4 =373) . Экспонента е открытого ключа шифра может быть любым взаимно простым числом с функцией Эйлера φ(n)=φ(527)=480 . Впрочем, для рассматриваемого случая открытый ключ е может быть задан произвольно. Действительно, пусть е=2, 4, 7, 9, 17, 111 тогда:

154 2 (mod527)=1 ;
154 4 (mod527)=1 ;
154 7 (mod527)=154 ;
154 9 (mod527)=154 ;
154 17 (mod527)=154 ;
154 111 (mod527)=154 ;
187 2 (mod527)=187 ;
187 4 (mod527)=187 ;
187 7 (mod527)=187 ;
187 9 (mod527)=187 ;
187 17 (mod527)=187 ;
187 111 (mod527)=187 ;
341 2 (mod527)=341 ;
341 4 (mod527)=1 ;
341 7 (mod527)=341 ;
341 9 (mod527)=341 ;
341 17 (mod527)=341 ;
341 111 (mod527)=341 ;
373 2 (mod527)=1 ;
373 4 (mod527)=373 ;
373 7 (mod527)=373 ;
373 9 (mod527)=373 ;
373 17 (mod527)=373 ;
373 111 (mod527)=373 .

Из рассмотренного примера следует простой вывод. Действительно, к выбору параметров процесса шифрования надо подходить очень внимательно и проводить тщательный предварительный анализ таких параметров. Как это делать - отдельный вопрос, и в рамках этой работы он не рассматривается.

Криптосистема RSA на каждом такте шифрования преобразует двоичный блок открытого текста m длины size(n), рассматриваемый как целое число, в соответствии с формулой: c = m e (mod n).

При этом n = pq, где p и q - случайные простые числа большой разрядности, которые уничтожаются после формирования модуля и ключей. Открытый ключ состоит из пары чисел e и n. Подключ e выбирается как достаточно большое число из диапазона 1 < e < φ(n), с условием: НОД(e, j(n)) = 1, где j(n) - наименьшее общее кратное чисел p–1 и q–1. Далее, решая в целых числах x, y уравнение xe + yφ(n) = 1, полагается d = х, т.е. ed = 1(j(n)). При этом для всех m выполняется соотношение m ed = m(n), поэтому знание d позволяет расшифровывать криптограммы.

Чтобы гарантировать надежную защиту информации, к системам с открытым ключом предъявляются два следующих требования.

1. Преобразование исходного текста должно исключать его восстановление на основе открытого ключа.

2. Определение закрытого ключа на основе открытого также должно быть вычислительно нереализуемым. При этом желательна точная нижняя оценка сложности (количества операций) раскрытия шифра.

Алгоритмы шифрования с открытым ключом получили широкое распространение в современных информационных системах.

Рассмотрим построение криптосистемы RSA на простом примере.

1. Выберем p = 3 и q = 11.

2. Определим n = 3 ∙ 11 = 33.

3. Найдем j(n) = (p – 1)(q – 1) = 20.

5. Выберем число d, удовлетворяющее 7d = 1(mоd 20).

Легко увидеть, что d = 3(mоd 20).

Представим шифруемое сообщение как последовательность целых чисел с помощью соответствия: А = 1, B = 2, С = 3, ..., Z = 26. Поскольку size(n) = 6, то наша криптосистема в состоянии зашифровывать буквы латинского алфавита, рассматриваемые как блоки, Опубликуем открытый ключ (e, n) = (7, 33) и предложим прочим участникам системы секретной связи зашифровывать с его помощью сообщения, направляемые в наш адрес.Пусть такимсообщением будет CAB, которое в выбранном нами кодировке принимает вид (3, 1, 2).Отправитель должензашифроватькаждый блок и отправитьзашифрованное сообщение в наш адрес:

RSA(C) = RSA(3) = 3 7 = 2187 = 9(mod 33);
RSA(A) = RSA(1) = 1 7 = 1(mod 33);
RSA(B) = RSA(1) = 2 7 = 128 = 29(mod 33).

Получив зашифрованное сообщение (9, 1, 29), мы сможем его расшифровать на основе секретного ключа (d, n) = (3, 33), возводя каждый блок в степень d = 3:

9 3 = 729 = 3(mоd 33);
1 3 = 1(mоd 33);
29 3 = 24389 = 2(mоd 33).

Для нашего примера легко найти секретный ключ перебором. На практике это невозможно, т.к. для использования на практике рекомендуются в настоящее время следующие значения size(n):


· 512–768 бит - для частных лиц;

· 1024 бит - для коммерческой информации;

· 2048 бит- для секретной информации.

Пример реализации алгоритма RSA представлен в листингах 18.1 и 18.2 (компиляторы - Delphi, FreePascal).

Листинг 18.1. Пример реализации алгоритма RSA на языке Pascal

program Rsa;
{$APPTYPE CONSOLE}
{$IFDEF FPC}
{$MODE DELPHI}
{$ENDIF}

uses SysUtils, uBigNumber;

//Генератор случайных чисел

var t: array of Byte;
var pos: Integer;
var cbox: array of Byte =
(237, 240, 161, 1, 130, 141, 205, 98, 27, 169, 181, 202, 173, 47, 114, 224, 35, 183, 79, 82, 153, 220, 172, 22, 17, 11, 200, 131, 14, 154, 167, 91, 250, 31, 213, 112, 126, 241, 236, 155, 198, 96, 87, 143, 244, 151, 134, 38, 129, 233, 186, 101, 41, 94, 231, 115, 113, 199, 51, 145, 229, 37, 69, 180, 85, 33, 207, 163, 102, 187, 4, 89, 7, 44, 75, 88, 81, 120, 10, 232, 221, 168, 230, 158, 247, 211, 216, 156, 95, 64, 242, 215, 77, 165, 122, 5, 15, 119, 100, 43, 34, 48, 30, 39, 195, 222, 184, 92, 78, 135, 103, 166, 147, 32, 60, 185, 26, 251, 214, 90, 139, 45, 73, 150, 97, 116, 136, 68, 219, 248, 191, 192, 16, 8, 243, 50, 132, 105, 62, 201, 204, 65, 0, 99, 182, 121, 194, 108, 160, 170, 56, 226, 206, 254, 117, 178, 9, 197, 234, 127, 58, 171, 40, 29, 177, 142, 3, 228, 188, 162, 212, 157, 49, 175, 174, 140, 70, 106, 123, 66, 196, 246, 179, 42, 218, 71, 217, 227, 18, 164, 24, 67, 159, 25, 111, 255, 193, 245, 2, 238, 133, 21, 137, 152, 109, 148, 63, 124, 203, 104, 54, 55, 223, 80, 107, 210, 225, 149, 252, 76, 12, 189, 93, 46, 23, 13, 36, 209, 61, 249, 110, 144, 86, 52, 253, 72, 28, 53, 57, 125, 59, 235, 84, 128, 208, 146, 20, 74, 6, 239, 190, 83, 19, 138, 118, 176);

procedure InicMyRandom;
var i: Integer;
var s: string;
begin
WriteLn("Введите какой-либо текст для инициализации генератора
случайных чисел (до 256 символов):");
ReadLn(s);
i:= 1;
while (i<=255) and (i<=Length(s)) do

Рассмотрим работу асимметричного RSA . Он был предложен тремя математиками Рональдом Ривестом (R. Rivest ), Ади Шамиром (A. Shamir ) и Леонардом Адльманом (L. Adleman ) в 1978 году.

Под простым числом будем понимать такое число, которое делится только на 1 и на само себя. Эвклид в своих «Началах» показал, что для любого простого числа есть большее простое число, то есть количество простых чисел бесконечно.

Доказательство. Допустим, что существует наибольшее простое число p , определим произведение всех простых чисел P =2∙3∙5∙7∙…∙p .

Рассмотрим число P +1. Оно или само является простым числом большим p или произведением простых чисел, которые больше P . Мы пришли к противоречию, значит количество простых чисел бесконечно.

2∙3+1=7; 2∙3∙5+1=31; 2∙3∙5∙7+1=211;

2∙3∙5∙7∙11+1=2311; 2∙3∙5∙7∙11∙13+1=30031=59∙509.

Взаимно простыми числами будем называть такие числа, которые не имеют ни одного общего делителя, кроме 1 .

Наконец, под результатом операции i mod j будем считать остаток от целочисленного деления i на j. Чтобы использовать алгоритм RSA, надо сначала сгенерировать открытый и секретный ключи, выполнив следующие шаги.

1. Выберем два очень больших простых числа р и q .

2. Определим n как результат умножения р на q (n=p·q).

3. Выберем большое случайное число, которое назовем d . Это число должно быть взаимно простым с результатом умножения (р – 1) · (q – 1).

4. Определим такое число е , для которого является истинным следующее соотношение (е·d) mod ((p – 1) · (q – 1)) = 1.

5. Назовем открытым ключом числа е и n , а секретным ключом – числа d и n .

Теперь, чтобы зашифровать данные по известному ключу {е, n }, необходимо сделать следующее:

– разбить шифруемый текст на блоки, каждый из которых может быть представлен в виде числа M(i) ;

– зашифровать текст, рассматриваемый как последовательность чисел M(i) по формуле С(i) = (M(i) e) mod n . Чтобы расшифровать эти данные, используя секретный ключ {d, n}, необходимо выполнить следующие вычисления: M(i)=(C(i) d) mod n . В результате будет получено множество чисел M(i), которые представляют собой исходный текст.

Алгоритм RSA основан на одной из доказанных теорем Эйлера, частный случай которой утверждает, что если число n представимо в виде двух простых чисел p и q , то для любого x имеет место равенство

x (p-1)(q-1) mod n = 1.

Для дешифрования RSA- сообщений воспользуемся этой формулой. Для этого возведем обе ее части в степень (-y ):

(x (- y)(p-1)(q-1)) mod n = 1 (- y) = 1.



Теперь умножим обе ее части на x:

(x (-y)(p-1)(q-1)+1) mod n = 1· x = x.

Вспомним теперь, как создавались открытый и закрытый ключи. Мы подбирали d такое, что

e·d+(p-1)(q-1) ·y = 1,

e·d = (-y)(p-1)(q-1)+1.

Следовательно, в последнем выражении предыдущего абзаца мы можем заменить показатель степени на число (e·d). Получаем (x e · d) mod n = x . Для того чтобы прочесть сообщение c i = ((m i) e)mod n достаточно возвести его в степень d по модулю m :

((c i) d)mod n = ((m i) e · d) mod n = m i .

Приведем простой пример использования метода RSA для шифрования сообщения «CAB». Для простоты будем использовать очень маленькие числа (на практике используются большие числа).

1. Выберем р= q= 11.

2. Определим n= 3· 11=33.

3. Найдем (р–1) (q–1)= 20. В качестве d выберем любое число, которое является взаимно простым с 20, например d= 3.

4. Выберем число е . В качестве такого числа может быть взято любое число, для которого удовлетворяется соотношение (е· 3) mod 20 = 1,
например 7.

5. Представим шифруемое сообщение как последовательность целых чисел в диапазоне 0...32. Пусть буква А изображается числом 1, буква В – числом 2, а буква С – числом 3. Тогда сообщение можно представить в виде последовательности чисел 312. Зашифруем сообщение, используя ключ {7, 33}:

С(1)=(З 7) mod 33 = 2187 mod 33 = 9,

С(2) = (1 7) mod 33 = 1 mod 33 = 1,

С(З) = (2 7) mod 33 = 128 mod 33 = 29.

6. Попытаемся расшифровать сообщение {9, 1, 29}, полученное в результате зашифровывания по известному ключу, на основе секретного ключа {3, 33}:

M(1) = (9 3) mod 33 = 729 mod 33 = 3,

М(2) = (1 3) mod 33 = 1 mod 33 = 1,

М(З) = (29 3) mod 33 = 24389 mod 33 = 2.

Таким образом, в результате расшифровывания сообщения получено исходное сообщение «CAB».

Криптостойкость алгоритма RSA основывается на предположении, что исключительно трудно определить секретный ключ по известному открытому, поскольку для этого необходимо решить задачу о существовании делителей целого числа. Данная задача не допускает в настоящее время эффективного (полиномиального) решения. В связи с этим для ключей, состоящих из 200 двоичных цифр (а именно такие числа рекомендуется использовать), традиционные методы поиска делителей требуют выполнения огромного числа операций (около 10 23).

Криптосистема RSA используется в самых различных платформах и во многих отраслях. Она встраивается во многие коммерческие продукты, число которых постоянно увеличивается. Ее используют операционные системы Microsoft, Apple, Sun и Novell. В аппаратном исполнении алгоритм RSA применяется в защищенных телефонах, на сетевых платах Ethernet, на смарт-картах, широко используется в криптографическом оборудовании фирмы Zaxus (Rasal). Кроме того, алгоритм входит в состав всех основных протоколов для защищенных коммуникаций Internet, в том числе S/MIME, SSL и S/WAN, а также используется во многих учреждениях, например, в правительственных службах, в большинстве корпораций, в государственных лабораториях и университетах.

Технологию шифрования RSA BSAFE используют более 500 миллионов пользователей всего мира. Так как в большинстве случаев при этом используется алгоритм RSA, то его можно считать наиболее распространенной криптосистемой общего ключа в мире, и это количество имеет явную тенденцию к увеличению по мере роста пользователей Internet.

Электронная цифровая подпись (ЭЦП)— реквизит электронного документа, предназначенный для удостоверения источника данных и защиты данного электронного документа от подделки.

Общая схема

Схема электронной подписи обычно включает в себя:

  • алгоритм генерации ключевых пар пользователя;
  • функцию вычисления подписи;
  • функцию проверки подписи.

Функция вычисления подписи на основе документа и секретного ключа пользователя вычисляет собственно подпись. В зависимости от алгоритма функция вычисления подписи может быть детерминированной или вероятностной. Детерминированные функции всегда вычисляют одинаковую подпись по одинаковым входным данным. Вероятностные функции вносят в подпись элемент случайности, что усиливает криптостойкость алгоритмов ЭЦП. Однако, для вероятностных схем необходим надёжный источник случайности (либо аппаратный генератор шума, либо криптографически надёжный генератор псевдослучайных бит), что усложняет реализацию.

В настоящее время детерминированые схемы практически не используются.

Функция проверки подписи проверяет, соответствует ли данная подпись данному документу и открытому ключу пользователя. Открытый ключ пользователя доступен всем, так что любой может проверить подпись под данным документом.

Поскольку подписываемые документы — переменной (и достаточно большой) длины, в схемах ЭЦП зачастую подпись ставится не на сам документ, а на его хэш. Для вычисления хэша используются криптографические хэш-функции, что гарантирует выявление изменений документа при проверке подписи. Хэш-функции не являются частью алгоритма ЭЦП, поэтому в схеме может быть использована любая надёжная хэш-функция.

Защищённость

Цифровая подпись обеспечивает:

  • Удостоверение источника документа. В зависимости от деталей определения документа могут быть подписаны такие поля, как «автор», «внесённые изменения», «метка времени» и т. д.
  • Защиту от изменений документа. При любом случайном или преднамеренном изменении документа (или подписи) изменится хэш, следовательно, подпись станет недействительной.
  • Невозможность отказа от авторства. Так как создать корректную подпись можно лишь, зная закрытый ключ, а он известен только владельцу, то владелец не может отказаться от своей подписи под документом.

Возможны следующие угрозы цифровой подписи:

  • Злоумышленник может попытаться подделать подпись для выбранного им документа.
  • Злоумышленник может попытаться подобрать документ к данной подписи, чтобы подпись к нему подходила.
  • Злоумышленник может попытаться подделать подпись для какого-нибудь документа.

При использовании надёжной хэш-функции, вычислительно сложно создать поддельный документ с таким же хэшем, как у подлинного. Однако, эти угрозы могут реализоваться из-за слабостей конкретных алгоритмов хэширования, подписи, или ошибок в их реализациях.

Тем не менее, возможны ещё такие угрозы системам цифровой подписи:

  • Злоумышленник, укравший закрытый ключ, может подписать любой документ от имени владельца ключа.
  • Злоумышленник может обманом заставить владельца подписать какой-либо документ, например используя протокол слепой подписи.
  • Злоумышленник может подменить открытый ключ владельца (см. управление ключами) на свой собственный, выдавая себя за него.
Алгоритмы ЭЦП
  • Американские стандарты электронной цифровой подписи: DSA, ECDSA
  • Российские стандарты электронной цифровой подписи: ГОСТ Р 34.10-94 (в настоящее время не действует), ГОСТ Р 34.10-2001
  • Украинский стандарт электронной цифровой подписи: ДСТУ 4145-2002
  • Стандарт PKCS#1 описывает, в частности, схему электронной цифровой подписи на основе алгоритма RSA
Управление ключами

Важной проблемой всей криптографии с открытым ключом, в том числе и систем ЭЦП, является управление открытыми ключами. Необходимо обеспечить доступ любого пользователя к подлинному открытому ключу любого другого пользователя, защитить эти ключи от подмены злоумышленником, а также организовать отзыв ключа в случае его компрометации.

Задача защиты ключей от подмены решается с помощью сертификатов. Сертификат позволяет удостоверить заключённые в нём данные о владельце и его открытый ключ подписью какого-либо доверенного лица. В централизованных системах сертификатов (например PKI) используются центры сертификации, поддерживаемые доверенными организациями. В децентрализованных системах (например PGP) путём перекрёстного подписывания сертификатов знакомых и доверенных людей каждым пользователем строится сеть доверия.

Управлением ключами занимаются центры распространения сертификатов. Обратившись к такому центру пользователь может получить сертификат какого-либо пользователя, а также проверить, не отозван ли ещё тот или иной открытый ключ.

Описание алгоритма RSA

RSA — криптографический алгоритм с открытым ключом. RSA стал первым алгоритмом такого типа, пригодным и для шифрования и для цифровой подписи. Алгоритм используется в большом числе криптографических приложений.

История

Британский математик Клиффорд Кокс (Clifford Cocks), работавший в центре правительственной связи (GCHQ) Великобритании, описал аналогичную систему в 1973 году во внутренних документах центра, но эта работа не была раскрыта до 1977 года и Райвест, Шамир и Адлеман разработали RSA независимо от работы Кокса.

В 1983 году MIT был выдан патент 4405829 США, срок действия которого истёк 21 сентября 2000 года.

Описание алгоритма

Безопасность алгоритма RSA основана на трудности задачи разложения на множители. Алгоритм использует два ключа — открытый (public) и секретный (private), вместе открытый и соответствующий ему секретный ключи образуют пару ключей (keypair). Открытый ключ не требуется сохранять в тайне, он используется для зашифрования данных. Если сообщение было зашифровано открытым ключом, то расшифровать его можно только соответствующим секретным ключом.

Генерация ключей

Для того, чтобы сгенерировать пару ключей выполняются следующие действия:

1. Выбираются два больших простых числа и

2. Вычисляется их произведение

3. Вычисляется Функция Эйлера

4. Выбирается целое такое, что и взаимно простое с

5. С помощью расширенного алгоритма Евклида находится число такое, что

Число и используется в качестве шифртекста. Для расшифрования нужно вычислить

Нетрудно убедиться, что при расшифровании мы восстановим исходное сообщение:

Из условия

следует, что

для некоторого целого , следовательно

Согласно теореме Эйлера:

Некоторые особенности алгоритма

Генерация простых чисел

Для нахождения двух больших простых чисел и , при генерации ключа, обычно используются вероятностные тесты чисел на простоту, которые позволяют быстро выявить и отбросить составные числа.

· при малом значении открытого показателя (, например) возможна ситуация, когда окажется, что . Тогда , и нарушитель легко сможет восстановить исходное сообщение вычислив корень степени из .

· поскольку RSA является детерминированным алгоритмом, т.е. не использует случайных значений в процессе работы, то нарушитель может использовать атаку с выбранным открытым текстом.

Для решения перечисленных проблем сообщения дополняются перед каждым зашифрованием некоторым случайным значением — солью. Дополнение выполняется таким образом, чтобы гарантировать, что , и . Кроме того, поскольку сообщение дополняется случайными данными, то зашифровывая один и тот же открытый текст мы каждый раз будем получать другое значение шифртекста, что делает атаку с выбранным открытым текстом невозможной.

Выбор значения открытого показателя

RSA работает значительно медленнее симметричных алгоритмов. Для повышения скорости шифрования открытый показатель выбирается небольшим, обычно 3, 17 или 65537. Эти числа в двоичном виде содержат только по две единицы, что уменьшает число необходимых операций умножения при возведении в степень. Например, для возведения числа в степень 17 нужно выполнить только 5 операций умножения:

должно быть достаточно большим. В 1990 году Михаэль Винер (Michael J. Wiener) показал, что если выбирается небольшим, то оказывается достаточно большим и проблемы не возникает.

Длина ключа

Число n должно иметь размер не меньше 512 бит. В настоящий момент система шифрования на основе RSA считается надёжной, начиная с размера N в 1024 бита.

Применение RSA

Система RSA используется для защиты программного обеспечения и в схемах цифровой подписи. Также она используется в открытой системе шифрования PGP.

Из-за низкой скорости шифрования (около 30 кбит/с при 512 битном ключе на процессоре 2 ГГц), сообщения обычно шифруют с помощью более производительных симметричных алгоритмов со случайным ключом (сеансовый ключ ), а с помощью RSA шифруют лишь этот ключ.

II. Реализация

Для примера была реализована программа для цифрового подписания файлов и проверки подписей. Использовался алгоритм RSA и сертификаты X.509. Сертификат пользователя выбирается из хранилища сертификатов windows.

Цифровые подписи сохраняются в xml файле с именем <имя исходного файла>.sig.xml

Фрагменты кода

public class Signature

private X509Certificate2 certificate;

private DateTime date;

private byte signedHash;

public X509Certificate2 Certificate

get { return certificate; }

set { certificate = value; }

public DateTime Date

get { return date; }

set { date = value; }

public void Sign(string input, X509Certificate2 cert)

this.certificate = new X509Certificate2(cert);

date = DateTime.Now;

signedHash = ((RSACryptoServiceProvider)cert.PrivateKey).SignData(Utils.StringToBytes(stringToEncrypt),new MD5CryptoServiceProvider());

public bool IsValid(string input)

string stringToEncrypt = input + date.Ticks;

return ((RSACryptoServiceProvider)certificate.PublicKey.Key).VerifyData(Utils.StringToBytes(stringToEncrypt),new MD5CryptoServiceProvider(), signedHash);

public byte SignedHash

get { return signedHash; }

set { signedHash = value; }

void DisplaySignatureList()

FileSignatures fileSignatures = ReadSignatures(GetSignaturesFileName(fileNameTextBox.Text));

signatureListTextBox.Text = "";

foreach (Signature signaure in fileSignatures.Signaures)

string row = "";

row+= signaure.Certificate.Subject;

row+=" "+signaure.Date.ToString();

string hash = GetFileHash(fileNameTextBox.Text);

bool valid = signaure.IsValid(hash);

row = "v " + row;

row = "x " + row;

signatureListTextBox.Text += row+"\r\n";

III. Литература

  1. С.Бернет, С. Пейн: Криптография. Официальное руководство RSA Security – М. «Бином», 2002
  2. В. Зима: Безопасность глобальных сетевых технологий – «БХВ-Петербург», 2003
  3. Венбо Мао Современная криптография: теория и практика = Modern Cryptography: Theory and Practice. — М.: «Вильямс», 2005. — С. 768. ISBN 0-13-066943-1
  4. Нильс Фергюсон, Брюс Шнайер Практическая криптография: Practical Cryptography: Designing and Implementing Secure Cryptographic Systems. — М.: «Диалектика», 2004. — С. 432. ISBN 0-471-22357-3
  5. Шнайер, Брюс. Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си — М.: Издательство ТРИУМФ, 2002 — 816с.:ил. ISBN 5-89392-055-4