Технологии передачи информации в SAN. Технологии передачи данных в компьютерной сети Поколения сотовых технологий

В наше время наибольшее распространение получили электрические каналы связи. Это совокупность технических устройств, обеспечивающих передачу сообщения любого вида от отправителя к получателю. Она осуществляется с помощью электрических сигналов, распространяющихся по проводам, или радиосигналов. Различают каналы электросвязи: телефонные, телеграфные, факсимильные, телевизионные, проводного и радиовещания, телемеханические передачи данных и т.д. Составной частью каналов связи являются линии связи - проводные и беспроводные (радиосвязь). В свою очередь проводная связь может осуществляться по электрическому кабелю и по оптоволоконной линии. А радиосвязь осуществляется по ДВ-, СВ-, КВ- и УКВ-диапазонам без применения ретрансляторов, по спутниковым каналам с применением космических ретрансляторов, по радиорелейным линиям с применение наземных ретрансляторов и по сотовой связи с использованием сети наземных базовых радиостанций.

Проводные линии связи

Проводные линии электросвязи делятся на кабельные, воздушные и оптоволоконные.

Кабельные линии связи

Кабельные линии связи - линии связи, состоящие из направленных сред передачи (кабели), предназначенные совместно с проводными системами передач, для организации связи. Кабельные линии состоят из узлов связи, необслуживаемых регенерационных (усилительных) пунктов - НРП, НУП, кабельной трассы.

Воздушные линии связи

Воздушные линии подразделяются на линии: междугородной телефонной связи (МТС), сельской телефонной связи (СТС), городской телефонной связи (ГТС) и радиотрансляционных сетей (РС).

По своей значимости воздушные линии СТС; абонентские линии СТС.

Прочтите также:

Разработка синтезатора звуковых сигналов с компрессией данных
Целью данного курсового проекта является разработка синтезатора звуковых сигналов с компрессией данных, позволяющего осуществлять воспроизведение звуковых сообщений. Команды управл...

Разработка и изготовление комплекса усиления и оцифровки сигнала на основе микроконтроллера
Развитие микроэлектроники и широкое ее применение в промышленном производстве, в устройствах и системах управления самыми разнообразными объектами и процессами является в настоящее врем...

Расчет характеристик радиолинии
Для передачи сигналов от передающей антенны (излучателя) к радиоприёмной антенне в качестве линий передачи энергии часто используют естественную среду. Линию передачи при этом называют е...

Локальные и глобальные компьютерные сети и технологии их использования в обучении школьников

Современная система общего среднего образования, все входящие в нее учебные направления, так или иначе, нацелены на формирование у школьников умений работать с информацией. Неслучайно в большинстве государственных программ, определяющих приоритетные направления развития образования в Российской Федерации, особое внимание уделяется формированию общеучебных и общекультурных навыков работы учащихся с информацией и средствами ее обработки, что становится основным стержнем профессиональной деятельности выпускников учебных заведений в условиях информационного общества, необходимым компонентом информационной культуры. В свою очередь, стремление к формированию информационной культуры у будущих выпускников приводит к ориентации общего образования на приобретение учащимися знаний о телекоммуникациях и средствах массовой информации, использование средств телекоммуникаций для приобретения различных знаний и творческого самовыражения, оценку достоверности информации, развитие критического мышления, соотнесение информации и знания, умение правильно организовать информационный процесс, оценить и обеспечить информационную безопасность.
Телекоммуникационные системы имеют первостепенное значение не только в системе общего среднего образования, а играют основополагающую роль практически во всех сферах жизни общества. На уровне развития телекоммуникационного информационного пространства наиболее существенный отпечаток накладывают уровень развития первичных сетей связи и уровень развития сетевых информационных технологий, которые по праву можно рассматривать в качестве технологий передачи информации .
Под сетью связи понимают совокупность проводных, радио-, оптических и иных каналов связи, специализированной каналообразующей аппаратуры, а также центров и узлов связи, обеспечивающих функционирование данной сети. Практически во всех современных сетях связи, используемых при создании информационных телекоммуникационных систем, одновременно присутствуют и работают совместно несколько различных по своим характеристикам участков сети. Эти обстоятельства в значительной степени определяют стратегию и тактику создания и использования сетевых информационных технологий.
Сетевые информационные технологии развивались одновременно с развитием каналов связи. В начале прошлого века основу телеграфных и телефонных сетей связи составляли аналоговые проводные и радиоканалы электросвязи, которые затем с развитием микроэлектроники стали все больше заменяться цифровыми волоконно-оптическими линиями связи, обладающими существенно более высокими характеристиками по качеству и скорости передачи информации. Возникло понятие телекоммуникационные технологии, которое объединяет способы рациональной организации работы телекоммуникационных систем.
Телекоммуникационные системы, используемые сегодня в системе общего среднего образования, как правило, основаны на различных соединениях компьютеров между собой. Связанные между собой компьютеры можно рассматривать с разных точек зрения. С одной стороны, объединение компьютеров - это компьютерная сеть . С другой стороны, - это средство передачи информации в пространстве, средство организации общения людей. Именно благодаря этому свойству компьютерные сети все чаще называют телекоммуникационными сетями, подчеркивая, тем самым, их предназначение, а не особенности их устройства.
Различают



· локальные и глобальные телекоммуникационные сети. Как правило, локальной называют сеть, связывающую компьютеры, находящиеся в одном здании, одной организации, в пределах района, города, страны. Иными словами чаще всего локальной является сеть, ограниченная в пространстве. Локальные сети распространены в сфере образования. Большинство школ и других учебных заведений имеет компьютеры, связанные в локальную сеть. В тоже время современные технологии позволяют связывать отдельные компьютеры, находящиеся не только в разных помещениях или зданиях, но находящиеся на разных континентах. Неслучайно можно встретить учебные заведения, имеющие филиалы в разных странах, компьютеры которых объединены в локальные сети. Более того, локальные сети могут объединять и компьютеры разных учебных заведений, что позволяет говорить о существовании локальных сетей сферы образования.
В отличие от локальных, глобальные сети не имеют пространственных ограничений. К глобальной сети может быть подключен любой компьютер. Любой человек может получить доступ к информации, размещенной в этой сети. Наиболее известным примером глобальной телекоммуникационной сети является сеть Интернет (INTERNET), доступ к которой появляется у всё большего числа средних школ. Интернет не является единственной глобальной телекоммуникационной сетью. Существуют и другие, такие как сеть FIDO или сеть SPRINT.
Таким образом, большинство школ и других учебных заведений системы общего среднего образования обладают как локальными сетями, так и возможностью использования глобальных сетей.
При всем многообразии информационных и телекоммуникационных технологий, а также способов организации данных при их пересылке по каналам связи всемирная информационная компьютерная сеть Интернет занимает центральное место. Более того, на сегодняшний день, это практически единственная глобальная телекоммуникационная сеть, повсеместно используемая в системе общего среднего образования. Этому во многом способствуют высокая скорость и надежность передачи через Интернет данных различных форматов (текст, графические изображения, звук, видео и пр.). Сеть Интернет предоставляет возможность коллективного доступа к учебным материалам, которые могут быть представлены как в виде простейших учебников (электронных текстов), так и в виде сложных интерактивных систем, компьютерных моделей, виртуальных учебных сред и т.д.
Количество пользователей и источников информации сети Интернет непрерывно увеличивается. Кроме того, происходит постоянное улучшение качества предоставляемых телекоммуникационных услуг. Благодаря этому, высококачественный доступ к Интернет получают не только предприятия и организации, работающие в экономической и других сферах, но и учреждения общего среднего образования.
Современный Интернет характеризуется наличием серьезной проблемы организации глобального поиска информации. Разработаны, так называемые, поисковые системы, которые по нужному слову или сочетанию слов находят ссылки на те страницы в сети, в которых представлено это слово или сочетание. Вместе с тем, несмотря на наличие существующих поисковых систем, пользователю приходится тратить большое количество времени как на процесс поиска информации, так и на обработку и систематизацию полученных данных.
В образовании данная проблема ощущается особенно остро: образовательные информационные ресурсы если и представлены в сети, то, как правило, представлены несистемно. Отсутствие системного подхода к размещению подобных ресурсов, а также отсутствие единообразия в решении психолого-педагогических, технологических, эстетических, эргономических и ряда других проблем при разработке и эксплуатации образовательных ресурсов сети Интернет приводит к практическому неиспользованию преимуществ телекоммуникационных средств в целях повышения качества образовательного процесса.
Наиболее распространенной коммуникационной технологией и соответствующим сервисом в компьютерных сетях стала технология компьютерного способа пересылки и обработки информационных сообщений, обеспечивающая оперативную связь между людьми. Электронная почта (E-mail) - система для хранения и пересылки сообщений между людьми, имеющими доступ к компьютерной сети. Посредством электронной почты можно передавать по компьютерным сетям любую информацию (текстовые документов, изображения, цифровые данные, звукозаписи и т.д.). Такая сервисная служба реализует:

  • редактирование документов перед передачей,
  • хранение документов и сообщений,
  • пересылку корреспонденции,
  • проверку и исправление ошибок, возникающих при передаче,
  • выдачу подтверждения о получении корреспонденции адресатом,
  • получение и хранение информации,
  • просмотр полученной корреспонденции.

Электронная почта может быть использована для общения участников учебного процесса и пересылки учебно-методических материалов. Важным свойством электронной почты, привлекательным для общего среднего образования, является возможность реализации асинхронного обмена информацией. Чтобы использовать электронную почту, достаточно освоить несколько команд почтового клиента для отправки, приема и обработки информации. Заметим, что при коммуникации посредством электронной почты возникает больше психолого-педагогических проблем, чем технических. Дело в том, что при непосредственном человеческом общении информация передается не только с помощью речи, здесь включаются иные формы коммуникации: мимика, жесты и т.д. Конечно, для передачи эмоций при переписке можно использовать "смайлики", но это не решает проблему обезличивания общения. Тем не менее, переход к письменной речи воспитывает такие положительные черты, как точность, краткость выражения мысли и аккуратность.

Электронная почта может использоваться педагогами для консультации, отправки контрольных работ и профессионального общения с коллегами. Целесообразно также ее использование для проведения электронного занятия в асинхронном режиме, когда обучающимся предварительно пересылается текст занятия в электронном виде, выдержки из рекомендованной литературы и другие учебные материалы, а затем проводятся консультации по электронной почте.
Отличительной особенностью и удобством электронной почты является возможность рассылать одно и то же сообщение сразу большому числу адресатов.
Подобный принцип рассылки используется другой службой сети Интернет под названием списки рассылки . Данный сервис работает в режиме подписки. Подписавшись на список рассылки, абонент с определенной периодичностью получает на свой почтовый ящик подборку электронных сообщений по выбранной теме. Списки рассылки выполняют в сети Интернет функции периодических изданий.
В системе общего образования с помощью списков рассылки можно организовать так называемые "виртуальные учебные классы" . В созданной учебной группе школьников объясняются правила и способы подписки, и она приступает к работе. Каждое сообщение, адресованное группе любым ее участником, автоматически рассылается всем членом группы. Одним из участников такой группы может быть учитель.
Основными дидактическими возможностями использования списков рассылки являются автоматическая рассылка учебно-методических материалов и организация виртуальных учебных классов.
Другим популярным сервисом, предоставляемым современными телекоммуникационными сетями и реализующим обмен информацией между людьми, объединенными общими интересами, являются телеконференции.
Телеконференция представляет собой сетевой форум, организованный для ведения дискуссии и обмена новостями по определенной тематике.
Телеконференция позволяют публиковать сообщения по интересам на специальных компьютерах в сети. Сообщения можно читать, подключившись к компьютеру и выбрав тему для дискуссии. Далее, по желанию, возможен ответ автору статьи или отправка собственного сообщения. Таким образом, организовывается сетевая дискуссия, носящая новостной характер, поскольку сообщения хранятся небольшой период времени.
Наличие аудио- и видеооборудования (микрофон, цифровая видеокамера и др.), подключенного к компьютеру, позволяет организовать компьютерные аудио и видеоконференции, все более широко распространяемые в системе общего среднего образования.
В отличие от списков рассылки, основанных на применении электронной почты, некоторые телеконференции и группы новостей работают в режиме реального времени. Разница заключается в том, что в случае со списком рассылки обмен информацией осуществляется в режиме off-line путем автоматической рассылки электронных писем. Сервер новостей публикует все сообщения на общей доске немедленно, и сохраняет их в течение некоторого времени. Таким образом, телеконференции позволяют организовать дискуссию как в режиме on-line, так и в отложенном режиме. При организации учебных занятий целесообразно использование групп новостей, модерируемых учителем.
С развитием технических средств компьютерных сетей увеличивается скорость передачи данных. Это позволяет пользователям, подключенным к сети, не только обмениваться текстовыми сообщениями, но и передавать на значительное расстояние звук и видеоизображение. Одним из представителей программ, реализующих общение через сеть, является программа NetMeeting, входящая в состав комплекта Internet Explorer. MS NetMeeting является средством информатизации, реализующим возможности прямой связи через Интернет.
Следует отметить, что для реализации звуковой связи необходимо соответствующее техническое оборудование: звуковая карта, микрофон и акустические системы. Для передачи видеоизображения нужно видеоплата и камера, или только камера, поддерживающая стандарт Video for Windows.
Основными направления использования MS NetMeeting в учебном процессе являются:

  • организация виртуальных учебных занятий и консультаций в реальном режиме времени, включая голосовое общение и передачу видеоизображений участников;
  • обмен информацией в текстовом и графическом режиме;
  • организация совместной работы с учебной информацией в режиме on-line;
  • пересылка учебно-методической информации в виде файлов в реальном режиме времени.

Одной из важнейших телекоммуникационных технологий является распределенная обработка данных . В этом случае персональные компьютеры используются на местах возникновения и применения информации. Если они соединены каналами связи, то это дает возможность распределить их ресурсы по отдельным функциональным сферам деятельности и изменить технологию обработки данных в направлении децентрализации.
В наиболее сложных системах распределенной обработки данных осуществляется подключение к различным информационным службам и системам общего назначения (службам новостей, национальным и глобальным информационно-поисковым системам, базам данных и банкам знаний и т.д.).
Чрезвычайно важным для общего среднего образования сервисом, реализованным в компьютерных сетях, является автоматизированный поиск информации . Используя специализированные средства - информационно-поисковые системы, можно в кратчайшие сроки найти интересующие сведения в мировых информационных источниках.
Основными дидактическими целями использования подобных ресурсов, получаемых по телекоммуникационным каналам, в обучении школьников являются сообщение сведений, формирование и закрепление знаний, формирование и совершенствование умений и навыков, контроль усвоения и обобщение.
Использование имеющихся на сегодняшний день образовательных информационных ресурсов, большинство из которых опубликовано в сети Интернет, позволяет:

  • организовать разнообразные формы деятельности школьников по самостоятельному извлечению и представлению знаний;
  • " применять весь спектр возможностей современных информационных и телекоммуникационных технологий в процессе выполнения разнообразных видов учебной деятельности, в том числе, таких как регистрация, сбор, хранение, обработка информации, интерактивный диалог, моделирование объектов, явлений, процессов, функционирование лабораторий (виртуальных, с удаленным доступом к реальному оборудованию) и др.;
  • использовать в учебном процессе возможности технологий мультимедиа, гипертекстовых и гипермедиа систем;
  • диагностировать интеллектуальные возможности школьников, а также уровень их знаний, умений, навыков, уровень подготовки к конкретному занятию;
  • управлять обучением, автоматизировать процессы контроля результатов учебной деятельности, тренировки, тестирования, генерировать задания в зависимости от интеллектуального уровня конкретного обучаемого, уровня его знаний, умений, навыков, особенностей его мотивации;
  • создавать условия для осуществления самостоятельной учебной деятельности школьников, для самообучения, саморазвития, самосовершенствования, самообразования, самореализации;
  • работать в современных телекоммуникационных средах, обеспечить управление информационными потоками.

Таким образом, компьютерные телекоммуникации - это не только мощное средство обучения, позволяющее обучать работе с информацией, но, с другой стороны, компьютерные телекоммуникации - это особая среда общения людей друг с другом, среда интерактивного взаимодействия представителей различных национальных, возрастных, профессиональных и других групп пользователей независимо от их места нахождения.
К сожалению, многие существующие методики эффективного использования телекоммуникационных технологий в процессе обучения школьников до сих пор не в полной мере используются учителями. Современный учитель должен помимо умения работать с новейшими компьютерными технологиями иметь представление о возможных способах их использования в учебном процессе. Опыт теоретического и практического освоения учителями различных методик использования телекоммуникационных технологий в процессе обучения мог бы стать основой для повышения эффективности и качества обучения, формирования и дальнейшего совершенствования своего профессионального мастерства.

Существуют следующие технологии передачи информации в компьютерных сетях: Fast Ethernet, IEEE 1394/USB, Fiber Channel, FDDI, X.25, Frame Relay, ATM, ISDN, ADSL, SONET. Первые четыре технологии передачи данных: Fast Ethernet, IEEE 1394/ USB, Fiber Channel и FDDI относят к технологиям локальных сетей. Оставшиеся создавались для глобальных каналов связи. Рассмотрим некоторые из распространенных технологий передачи данных - Fast Ethernet, Fiber Channel, FDDI, ISDN.

Fast Ethernet или «100Base-T » - это высокоскоростная технология передачи данных в локальных сетях. Правила передачи данных с использованием этой технологии определяются стандартом IEEE 802.3u. Этот стандарт описывает правила работы протоколов второго уровня модели OSI (канальный уровень) и предоставляет возможность передачи данных со скоростью 100 Мбит/с.

Технология 100Base-T использует метод CSMA/CD в качестве протокола контроля доступа к среде передачи. 100Base-T базируется на возможностях масштабирования, обеспечиваемых методом CSMA/CD. Масштабирование подразумевает возможность постого увеличения или уменьшения размеров сети без значительного снижения ее производительности, надежности и управляемости. Технология 100Base-T использует кабель UTP5 (неэкранированная витая пара 5-й категории).

Технология 100Base-T имеет следующие особенности.

  • 1. В связи с применением одинакового протокола контроля доступа к среде передачи - CSMA/CD сети, использующие технологию 10Base-T Ethernet, легко переводятся на более высокоскоростную технологию 100Base-T. Поэтому многие производители выпускают сетевые карты, поддерживающие обе технологии передачи данных: 10Base-T Ethernet и 100Base-T. Такие сетевые карты имеют встроенные возможности автоматического определения скорости передачи данных в сети и автоматической настройки на соответствующий режим работы. Поскольку технологии 10Base-T Ethernet и 100Base-T могут легко сосуществовать в одной сети, администраторы получают очень высокую степень гибкости по переводу станций с технологии 10Base-TEthernet на 100Base-T.
  • 2. Кабель UTP5 и сетевые карты 100Base-T в настоящее время выпускаются огромным количеством производителей.

Недостаткам использования технологии 100Base-T являются существенно большие ограничения на длину кабельных сегментов, чем в технологии 10Base-T Ethernet. По сравнению с технологией 10Base-T Ethernet, позволяющей организовывать сети максимального диаметра размером 500 м, технология 100Base-T ограничивает этот диаметр 205 м. Для существующих сетей, превышающих этот лимит, потребуется установка дополнительных маршрутизаторов.

Перспективность использования технологии 10Base-T заключается в том, что новая технология Gigabit Ethernet (также известная как 1000Base-T или IEEE 802.3z) разрабатывается с учетом возможности использования существующих кабельных систем на базе UTP5. При этой технологии скорость передачи данных в сети увеличивается до 1000 Мбит/с, что в десять раз быстрее передачи данных по технологии 100Base-T.

Одной из относительно новых технологий передачи данных является Fiber Channel.

Технология Fiber Channel основывается на применении оптического волокна в качестве среды передачи данных. Наиболее часто встречающимся применением этой технологии в настоящее время являются высокоскоростные сетевые устройства хранения данных (SAN - Storage Area Networks). Такие устройства используются для построения высокопроизводительных кластерных систем. Технология Fiber Channel изначально создавалась как интерфейс, обеспечивающий возможность высокоскоростного обмена данными между жесткими дисками и процессором компьютера. Позже стандарт был дополнен и сейчас определяет механизмы взаимодействия не только систем хранения данных, но и способов взаимодействия нескольких узлов кластерной системы между собой и средствами хранения данных.

Технология Fiber Channel имеет несколько преимуществ по сравнению с другими средами передачи данных, важнейшим из которых является скорость. Технология Fiber Channel обеспечивает скорость передачи данных 100 Мбит/с. Вторым важным преимуществом является возможность передачи сигнала на очень большие расстояния. Обмен данными с использованием светового сигнала вместо электрического обеспечивает возможность передачи информации на расстояния до 10-20 км без использования повторителей (при применении одноволнового кабеля). Третьим преимуществом технологии Fiber Channel является полный иммунитет к электромагнитным помехам. Это качество позволяет активно использовать оптическую среду передачи даже в производственных помещениях с большим количеством электромагнитных помех. Четвертое преимущество состоит в полном отсутствии излучения сигнала в окружающую среду, что дает возможность применения Fiber Channel в сетях с повышенными требованиями к безопасности обрабатываемых и хранимых данных.

Основным недостатком технологии Fiber Channel является ее стоимость: оптический кабель со всеми сопутствующими его использованию разъемами и способами монтажа является существенно более дорогим, чем медные кабели.

Для организации высокоскоростных локальных сетей используется FDDI (Fiber Distributed Data Interface).

Технология FDDI предназначена не для непосредственного соединения компьютеров, а для построения высокоскоростных магистральных каналов связи (backbone), объединяющих несколько сегментов локальной сети. Простейшим примером такой магистрали являются два сервера, соединенные высокоскоростным каналом связи, созданным на базе двух сетевых карт и кабеля. Так же, как и технология 100Base-T, FDDI обеспечивает скорость передачи данных 100 Мбит/с.

Сеть FDDI использует топологию двойного физического кольца. Передающиеся сигналы движутся по кольцам в противоположных направлениях. Одно из колец называется первичным, а другое - вторичным. При корректном функционировании сети первичное кольцо используется для передачи данных, а вторичное выступает в роли запасного.

В сети FDDI каждое сетевое устройство (узел сети) играет роль повторителя. FDDI поддерживает четыре вида узлов: станция с двойным подключением (DAS - dual-attached stations), станция с одинарным подключением (SAS - single-attached stations), концентратор с двойным подключением (DAC - dual-attached concentrator) и концентратор с одинарным подключением (SAC-single-attached concentrator). DAS и DAC всегда подключаются к обоим кольцам, a SAS и SAC - только к первичному кольцу.

Если в какой-либо точке сети возникает разрыв кабеля или Другая поломка, делающая невозможной передачу данных между соседними узлами сети, то устройства DAS и DAC восстанавливают работоспособность сети, перенаправляя сигнал в обход неработоспособного сегмента с использованием вторичного кольца.

FDDI использует маркер доступа в качестве протокола контроля доступа к среде передачи и оптический кабель в качестве среды передачи.

Технология FDDI имеет следующие преимущества.

Топология двойного физического кольца обеспечивает надежность передачи данных путем сохранения работоспособности сети в случае обрыва кабеля. В стандарт FDDI заложены функции управления сетью. В дополнение к перечисленным преимуществам существует спецификация (CDDI - Copper Distributed Data Interface) на построение сети по технологии FDDI с использованием медной витой пары. Эта спецификация позволяет снизить стоимость развертывания сети за счет использования менее дорогого медного кабеля вместо оптического.

Основным недостатком FDDI является цена построения сети. Сетевые карты и оптический кабель для FDDI обладают существенно большей стоимостью, чем для других технологий, обеспечивающих такую же скорость передачи данных. Специфика монтажа оптического кабеля требует дополнительной подготовки специалистов, выполняющих работу с кабелем. Несмотря на то, что сетевые карты CDDI дешевле FDDI, тем не менее они являются более дорогими, чем сетевые карты 100Base-T.

Технология обмена цифровыми данными с использованием телефонных линий Integrated Services Digital Network (ISDN) предоставляет возможность обмена данными в виде передачи цифровых сигналов по цифровым телефонным линиям. Эти данные могут представлять собой комбинацию видео, звуковых и других данных. ISDN имеет несколько технологических решений, обеспечивающих заказчика необходимой производительностью канала связи. Для частных лиц и небольших офисов в основном предоставляются линии с базовой скоростью (Basic Rate Interface - BRI). Для крупных компаний предоставляются линии Primary Rate Interface - PRI. BRI использует два «несущих» (bearer - В) канала связи с пропускной способностью 64 Кбит/с каждый для приема и передачи данных и один управляющий канал (delta - D) для установки и поддержания соединения. PRI - это совокупность нескольких цифровых линий, используемых параллельно для приема и передачи данных. Такие совокупности линий получили условные обозначения Т1 и Е1. В США стандартом является применение линий Tl. T1 состоит из 23 В-каналов и одного D-канала с суммарной пропускной способностью 1,544 Мбит/с.

В Европе используются линии E1. E1 состоит из 30 В-каналов и одного D-канала с суммарной пропускной способностью 2,048 Мбит/с.

ISDN требует применения специального оборудования, включающего в себя цифровые телефонные линии, и преобразователей (network termination unit - NT-1). NT-1 преобразует входной сигнал в цифровой, равномерно распределяет его по каналам для передачи и выполняет диагностический анализ состояния всей линии передачи данных. NT-1 является и точкой подключения к цифровой сети различного оборудования: телефонов, компьютеров и т.п. Также NT-1 может выполнять функции преобразователя для подключения оборудования, самостоятельно не поддерживающего ISDN.

Преимущества ISDN заключаются в следующем.

  • 1. Увеличена скорость обмена данными с дополнительными возможностями интеграции данных, голоса и видео в единый поток.
  • 2. С использованием ISDN вы имеете возможность передавать данные и голосовой трафик одновременно по одной телефонной линии.

К недостатку ISDN относится медленное распространение в связи с необходимостью преобразования существующей инфраструктуры телефонных сетей, что неминуемо влечет существенные затраты.

Современные системы передачи информации - ϶ᴛᴏ вычислительные сети. Совокупность всœех абонентов вычислительной сети называют абонентской сетью. Средства связи и передачи данных образуют сеть передачи данных (рис. 2.1).

Рис. 2.1 - Структурная схема сети ЭВМ.

Сеть передачи данных состоит из множества территориально рассредоточенных узлов коммутации, соединœенных друг с другом и с абонентами сети при помощи различных каналов связи.

Узел коммутации представляет собой комплекс технических и программных средств, обеспечивающих коммутацию каналов, сообщений или пакетов. При этом термин коммутацияозначает процедуру распреде­ления информации, при которой поток данных, поступающих в узел по одним каналам связи, передается из узла по другим каналам связи с учетом требуемого маршрута передачи.

Концентраторв сети передачи данных представляет собой устройство, объединяющее нагрузку нескольких каналов передачи данных для последую­щей передачи по меньшему числу каналов. Использование концентраторов позволяет снизить затраты на организацию каналов связи, обеспечиваю­щих подключение абонентов к сети передачи данных.

Канал связиявляется совокупностью технических средств и среды рас­пространения, обеспечивающей передачу сообщения любого вида от источника к получателю при помощи сигналов электросвязи.

Структура сети ЭВМ, построенная но принципу организации обмена информацией через узлы коммутации сети передачи данных, предполагает, что абоненты сети не имеют между собой прямых (выделœенных) каналов связи, а соединяется с ближайшим узлом коммутации и через него (и другие промежуточные узлы) с любым другим абонентом данной или даже другой сети ЭВМ.

Преимуществами построения сетей ЭВМ с использованием узлов коммутации сети передачи данных являются: значительное сокращение общего количества каналов связи и их протя­женности из-за отсутствия крайне важно сти организации прямых каналов между различными абонентами сети; высокая степень использования пропускной способности каналов свя­зи за счёт использования одних и тех же каналов для передачи различных видов информации между абонентами сети; возможность унификации технических решений по программно-техни­ческим средствам обмена для различных абонентов сети, включая созда­ние узлов интегрального обслуживания, способных осуществлять комму­тацию информационных потоков, содержащих сигналы данных, голоса, телœефакса и видео.

Сегодня в сетях передачи данных применяются три метода коммутации: коммутация каналов, коммутация сообщений и коммутация пакетов.

При коммутации каналовв сети создается непосредственное соединœе­ние путем создания сквозного канала передачи данных (без промежуточ­ного накопления информации при передаче). Физический смысл коммутации каналов состоит по сути в том, что до момента начала передачи информации в сети через узлы коммутации устанавливается непосредственное электрическое соединœение между абонентом-отправителœем и получателœем сообщения. Такое соединœе­ние устанавливается путем посылки отправителœем специального со­общения-вызова, ĸᴏᴛᴏᴩᴏᴇ содержит номер (адрес) вызываемого або­нента͵ и при прохождении по сети занимает каналы связи на всœем пути последующей передачи сообщения. Очевидно, что при коммутации каналов всœе составные части формируемого сквозного канала связи должны быть свободными. В случае если на каком-либо участке сети не будет обеспечено прохождение вызова (к примеру, нет свободных каналов между узлами коммутации, составляющими путь передачи сообщения), то вызывающий абонент получает отказ в установлении соединœения и для сети его вызов считается потерянным Для осуществления передачи сообщения абонент-отправитель должен вызов повторить

После установления соединœения абонент-отправитель получает сооб­щение о том, что он может начинать передачу данных. Принципиальной особенностью коммутации каналов является то, что всœе каналы, занятые при установлении соединœения, используются в процессе передачи данных одновременно и освобождаются только после завершения передачи дан­ных между абонентами. Типичным примером сети с коммутацией каналов является сеть телœе­фонной связи.

При коммутации сообщенийпроизводится прием и накопление сооб­щения в узле коммутации, а затем осуществляется его последующая пере­дача. Из этого определœения следует основное отличие коммутации сооб­щений от коммутации каналов, ĸᴏᴛᴏᴩᴏᴇ состоит по сути в том, что при комму­тации сообщений происходит промежуточное хранение сообщений в уз­лах коммутации и производится их обработка (определœение приоритета сообщения, размножение для многоадресной рассылки, запись сообщения и архив и т.п.). Для обработки сообщений они должны иметь принятый в сети формат, то есть однотипное расположение отдельных элементов со­общения. Сообщение от абонента сначала поступает в узел коммутации сети, к которому подключен данный абонент. Далее в узле производится обработ­ка сообщения и определяется направление его дальнейшей передачи с учетом адреса. В случае если всœе каналы в выбранном направлении передачи заняты, то сообщение ожидает в очереди момента освобождения нужного канала. После достижения сообщением узла сети, к которому подключен абонент-получатель, сообщение выдается ему в полном объёме по каналу связи между этим узлом и абонентом. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, сообщение при прохождении по сети в любой момент времени занимает лишь один канал связи.

Коммутация пакетовопределяется как разновидность коммутации со­общений, при которой сообщения разбиваются на части, называемые па­кетами, и передаются, принимаются и накапливаются в виде таких пакетов данных.

Эти пакеты нумеруются и снабжаются адресами, что позволяем передавать их по сети одновременно и независимо друг от друга.

Мы рассматривали историю развития компьютерных сетей. Рассмотрели все важные этапы становления сети Интернет и общие принципы ее работы.

Сегодняшняя наша тема будет называться: технологии передачи данных в сетях . Естественно, прежде всего, - компьютерных. В рамках данной статьи мы также рассмотрим основные средства передачи данных (понятия физических и логических интерфейсов), разберем основные технологии кодирования сигнала при его передаче, характеристики линий связи, а также - механизмы защиты от потерь.

Итак! Для чего существует сеть? Правильно, - для передачи по ней данных (информации). А как передается (распространяется) эта самая информация? Правильно, - через определенную среду передачи (кабельную инфраструктуру или - в диапазоне беспроводной связи).

Технологии передачи данных в своей работе используют (в зависимости от конкретной их реализации) различные физические интерфейсы.

Примечание: интерфейс это - физическая (или логическая) граница при взаимодействии нескольких независимых объектов - своеобразная прослойка между ними.

Интерфейсы делятся на две категории:

  1. физические интерфейсы
  2. интерфейсы логические

Физический интерфейс это - конечный порт подключения (разъем с группой электрических контактов). Например - интерфейс . А пара портов , соединенная с помощью разъемов и кабеля называется линией (каналом) передачи данных.


Логический интерфейс - это набор правил (протокол), который определяет саму логику обмена данными между связанными линией (сетью) устройствами.

Организация передачи данных в компьютерной сети происходит в тесном взаимодействии этих двух интерфейсов: физический компонент (сетевая карта) и логический (ее драйвер).

Обязательным условием для успешной реализации любой из технологий передачи данных является присутствие в потоке данных дополнительного компонента - протокола передачи .

Протокол передачи на логическом уровне представляет собой набор правил, которые определяют обмен данными между различными приложениями или устройствами. Эти правила задают единый способ передачи сообщений и обработки ошибок передачи. На физическом уровне протокол это - набор служебных данных, прикрепляющихся к основным пакетам (кадрам) информации, без которых просто невозможно эффективное взаимодействие в сети.

Протокол должен абстрагироваться (игнорировать) конкретную среду передачи, его задача - обеспечивать надежную связь между узлами в коммутационном облаке .


Давайте рассмотрим сам процесс организации передачи данных более подробно!

Сначала происходит вот что: приложение (программа) обращается к ОС за разрешением для сетевого взаимодействия с другим устройством (принтером, удаленным компьютером, камерой наблюдения и т.д.) Операционная система дает команду драйверу сетевой карты, который загружает в буфер карты первую порцию данных и инициирует работу интерфейса на передачу

На другом конце линии (сети) удаленное устройство принимает в буфер своей сетевой карты поступающие данные. После окончания передачи протокол проверяет нет ли в передаваемых частях (пакетах) данных ошибок (если надо запрашивает их повторную передачу) и загружает принятые данные из буфера карты в заранее зарезервированное пространство оперативной памяти. Оттуда уже конечное приложение (программа) извлекает информацию и работает с ней.

Вот - схемка, для наглядности (кликабельно):


На основании всего сказано выше, можно сделать такой вывод: технологии построения сети сводятся к тому, чтобы связать между собой удаленные устройства электрически и информационно! Т.е. - создать физическую среду передачи (кабель, беспроводная связь) и обеспечить общий протокол передачи данных по сети.

Клиент это - модуль (программа, служба, отдельный компьютер), служащий для формирования и передачи сообщений (запросов) к ресурсам удаленного устройства (серверу), с последующим приемом результатов от него и передачей их соответствующим приложениям на клиенте.

Сервер это - модуль (программа, служба...), который постоянно ожидает прихода из сети запросов от клиентов и обслуживающий (с участием локальной ОС) эти запросы.

Один сервер может обслуживать сразу множество клиентов.. Вот - еще пример: база данных, с которой работают клиенты. На них установлены клиентские модули программ, которые подключаются к базе и поддерживают только графический интерфейс работы с ней. Все вычисления и обработка, при этом, происходят на сервере и с использованием его ресурсов.


Познакомимся еще с одним определением! Клиент-серверная составляющая, которая предоставляет доступ к какому-то ресурсу компьютера через сеть называется сетевой службой . Причем, каждая служба связана с определенным типом сетевых ресурсов.

Например: служба печати позволяет нам распечатывать документы на сетевом принтере, а файловая служба - получать доступ к данным, находящимся на удаленных компьютерах. Для серфинга по Интернету есть своя веб-служба, которая состоит из серверной части (веб-сервера) и клиентской (веб-браузера) пользователя (IE, Opera, Firefox и т.д.)

В свете всего сказанного выше, технологии передачи данных должны опираться не просто на операционные системы, а на сетевые ОС, которые предоставляют пользователю доступ к информационным и аппаратным ресурсам других компьютеров. Причем эти операционные системы, согласно изложенным выше определениям, также делятся на два больших класса: серверные и клиентские ОС.

Клиентские системы обращаются, в основном, с запросами к серверным компонентам других компьютеров а серверные компоненты серверной ОС предоставляют эти услуги. Конечно, на данный момент, практически любая современная ОС способна выполнять как роль клиента, так и сервера. Серверные системы просто изначально созданы из расчета обслуживания ими максимального количества обращений и обладают лучшей отказоустойчивостью (надежностью).

Вот, к примеру, какая "игрушка" стоит у нас в серверной:


Но о ней - в другой раз:)

Давайте теперь с Вами поговорим вот о чем: современные (цифровые) технологии передачи сигнала связаны с его преобразованием (кодированием). Зачем нам это нужно? На то есть несколько причин:

  1. Предотвращение ошибок передачи данных (за счет уверенного распознавания сигнала принимающей стороной)
  2. Данные передаются быстрее (за счет более высокой плотности полезной информации в потоке)

Как видите, это - уже две весьма веские причины для того, чтобы уделить методам кодирования должное внимание:)

На фото ниже представлено два сигнала: аналоговый (красная линия) и цифровой (черные "ступеньки")


В данном случае аналоговая последовательность была оцифрована (дискретизирована) с определенной частотой. Чем выше будет частота дискритизации, тем меньший шаг будут иметь наши "ступеньки" и тем более похож будет оцифрованный сигнал на исходный (красный).

Похожие процессы происходят и при дискретизации (оцифровке) нашего голоса, снимаемого со входа микрофона .

В вычислительной технике используется двоичный код . Внутри компьютера это эквивалентно двум состояниям: наличию и отсутствию электрического напряжения (логический «ноль» или «единица»). Здесь - все просто: есть ток - "единица", нету - "ноль".

Современные технологии передачи данных позволяют производить кодирование сигнала и другими (более эффективными) способами. Но прежде, - еще одна небольшая классификация. По способу реализации процедура делится на:

  1. Физическое кодирование сигнала
  2. и - логическое (на более высоком уровне - поверх физического)

Давайте сначала обзорно рассмотрим первый пункт. Есть, к примеру, потенциальный способ кодирования , при котором единице соответствует один уровень напряжения (один потенциал), а нулю - другой. А при импульсном способе , для представления цифр используются импульсы разной полярности.

Для технологии кодирования определенная проблема при передаче данных состоит в том, что внешние (по отношению к самому компьютеру) линии передачи данных могут быть растянуты на большие расстояния и подвержены воздействию различных помех и наводок. Это приводит к искажению эталонных прямоугольных импульсов передачи сигнала и нужны новые (надежные) алгоритмы его кодирования и передачи.

В вычислительных сетях применяется как потенциальное , так и импульсное кодирование. Также применяется и такой способ передачи данных, как модуляция .

При модуляции дискретные данные передаются с помощью синусоидального сигнала той частоты, которую хорошо передает имеющаяся в распоряжении линия связи.


Первые два варианта преобразования применяются для линий высокого качества, а модуляция используется в каналах с сильными искажениями сигнала. Модуляция, к примеру, используется в глобальных сетях при передаче трафика через аналоговые телефонные каналы связи, которые были разработаны специально для передачи голоса (аналоговой составляющей) и поэтому плохо подходят для передачи цифровых импульсов.

На сам способ передачи оказывает влияние и такая вещь, как количество проводников (жил) в линиях связи. Для снижения их стоимости количество проводов, зачастую, снижается. При такой технологии передача данных осуществляется последовательно, а не параллельно (как это принято для линий связи внутри компьютера).

К способам кодирования на физическом уровне относятся такие алгоритмы, как NRZ (Non Return Zero), Манчестерский код (Manchester ), MLT-3 (Multi Level Transmission) и ряд других. Не вижу особого смысла останавливаться на них подробно, если будет интересно - Вы всегда сможете почитать о них в Интернете. Короче, я - отмазался! :)

Давайте пару слов скажем и о логическом кодировании. Как можно понять из названия, оно осуществляется по верху физического (накладываясь на него) и служит для обеспечения дополнительной надежности при передаче данных. Каким же образом?

Например: если характер передаваемого сигнала долгое время не изменяется (при передаче длинных последовательностей логических нулей или единиц) приемник может ошибиться при считывании очередного бита информации. Он просто не сможет разложить общий поток данных на отдельные составляющие и, как следствие, - правильно собрать в своем буфере из них исходную структуру.

Логическое кодирование (которому подвергается исходная последовательность данных) внедряет в длинные последовательности бит свои биты с противоположным значением, или - вообще заменяет их другими последовательностями. Кроме того, оно позволяет улучшить спектральные характеристики сигнала, в целом - упростить его расшифровку, а кроме того - передавать в общем потоке дополнительные служебные сигналы управления.

В основном, для логического преобразования применяются три технологии:

  1. вставка бит (bit stuffing)
  2. избыточное кодирование
  3. скремблирование

Также - не останавливаюсь отдельно (чтобы не занудить) :) основную идею Вы, надеюсь, уловили!

Коротко отчитаюсь следующим скриншотом:

На нем Вы можете видеть, как выглядит один и тот же сигнал, при наложении на него различных алгоритмов:

Технологии передачи данных имеют еще ряд проблем, с которыми приходится бороться. И одна из них - проблема взаимной синхронизации передатчика одного компьютера и приемника другого. Согласитесь, что сложно будет разобраться в потоке данных, если два устройства начнут генерировать его одновременно "навстречу" друг другу. Начнется бардак! :)

Проблема же синхронизации удаленных компьютеров может решаться разными способами: путем обмена специальными тактовыми синхроимпульсами или же - передачей служебных данных, не имеющих отношения к основному потоку информации. Один из стандартных приемов, служащий для повышения надежности передачи это - подсчет контрольной суммы каждого байта (блока байтов) и передача этого значения принимающей стороне.

Примечание: контрольная сумма это - некоторое значение, рассчитанное путем "наложения" на данные определённого алгоритма и используемое для проверки их целостности при передаче. Контрольные суммы могут использоваться для быстрого сравнения двух наборов данных на их идентичность. Отличающиеся данные будут иметь разные контрольные суммы..

Еще одна технология подтверждения целостности данных это - обмен между взаимодействующими устройствами служебными сигналами-квитанциями , подтверждающими правильность приема. Зачастую эта функция по умолчанию включается в сам протокол сетевого взаимодействия.

Технологии передачи данных подразумевают передачу информации от одного компьютера к другому - в обеих направлениях. Даже в том случае, когда нам кажется, что мы только принимаем данные (например - скачиваем музыку), то на самом деле - обмен идет в двух направлениях. Просто есть основной поток данных (который интересует нас - музыка) и вспомогательный (служебный), идущий в обратном направлении, образуемый квитанциями об успешной (или не успешной) передаче.

В зависимости от того, могут ли они передавать данные в обоих направлениях или нет, физические каналы делятся на несколько видов:

  • Дуплексный канал - обеспечивает одновременную передачу информации в обоих направлениях Дуплекс может состоять из двух независимых физических сред (один проводник на прием, второй - на передачу). Возможен и вариант, при котором одна среда используется для обеспечения дуплексного режима работы. В этом случае на клиентах применяются дополнительные алгоритмы выделения каждого потока данных из общего массива информации.
  • Полудуплексный канал - также обеспечивает передачу в обоих направлениях, но не одновременно, а - по очереди. Т.е. в течение определенного времени данные передаются в одном направлении, а затем - в обратном.
  • Симплексный канал - позволяет передавать информацию только в одном направлении. Дуплексный может состоять из двух симплексных каналов.

Ой, что-то много букв получилось:) Думаю, на сегодня - достаточно, будем продвигаться постепенно. В следующих статьях обязательно продолжим наше знакомство с , а пока что - до свидания, и - до следующих статей!

В завершение, посмотрите тематическое видео: