Тесты gtx 280 пользователями после покупки. Компьютерный ресурс У SM. Установка и драйверы

О покупке которой размышлял с декабря прошлого года. До этого в моём ПК стояла ТОП модель 2008 года (дата релиза - 16 июня 2008), GeForce GTX 280. Я решил сравнить два этих решения, велика ли между ними разница в DX10 (и ниже, причём на "ниже" будет сделан основной упор) приложениях, всё же почти четыре года прошло. Итак, предлагаю ознакомиться с результатами странных (ибо мало кто такие "бенчи" гоняет на видеокартах ТОП уровня) тестов.

Во-первых расскажу, почему я решил тестировать видеокарты ТОП уровня разных лет в некотором роде нетрадиционных бенчмарках. Основной причиной стал факт, что тестов в современных играх и тестах и так полным-полно, потому разумнее представить на обозрение читателей нечто неординарное. Ещё одна важная причина, почему я решился на такой шаг - распространённое среди ревьюверов мнение, что новые видеокарты не прогрессируют в плане производительности в старых играх (в которых используются старые API, а не современные DX11 и иже с ним) и потому не показывают в них особого роста FPS.

Прежде чем приступить к тестам, я хочу показать, насколько короче GTX 680 моей старой видеокарты (референсной GTX 280 с кулером Thermalright HR-03 GTX):

Вид внутри системного блока со старой видеокартой:

Тоже самое, но с видяхой новой:

Как Вы могли заметить, камрады, свободного места стало несколько больше, чему я рад (со свободным пространством внутри старого Mid-Tower"а без кабель-менеджмента всегда туго, если установлено оборудование приличного уровня и не модульный БП). Я поставил небольшой (92мм) вентилятор Scythe Gentle Typhoon с невысокими оборотами, дабы тот обдувал область VRM, на всякий случай (GTX 280 это очень здорово помогало после смены СО).

Конфигурация тестового стенда и сами тесты

Материнская плата - ASUS P8P67 PRO
Процессор - Core i5-2500K @ 4.2ГГц
Кулер - Thermalright Macho
Оперативная память - Corsair XMS3 CMX4GX3M1A1600C7 (8ГБ)
Видеокарта - Nvidia GeForce GTX 680 и GTX 280 (частоты обеих карточек референсные)
Блок питания - Enermax Pro 82+ 625 ватт
Накопитель - Intel 320 Series SSD 160ГБ
Монитор - BenQ XL2410T
ОС - Windows 7 Ultimate SP1 x64 (со всеми патчами, что выходили)
Версия драйверов ForceWare - для GTX 680 и для GTX 280

Итак, сейчас мы узнаем, насколько и в каких тестах GTX 680 шустрее GTX 280... или, может быть, медленнее?

Открывает программу необычных тестов продукт 3Dfx Interactive из далёкого прошлого, бенчмарк WizMark - софтина, что датирована 1996 годом. У меня тогда ПК не было, играл на Playstation 1, что за славное время было...

GeForce GTX 680 GeForce GTX 280

Для того, чтобы бенчмарк шёл без ограничений по скорости, я форсированно выставил Vsync OFF (отключил вертикальную синхронизацию) в настройках драйвера ForceWare (тоже самое пришлось сделать и для некоторых других бенчмарков). Отставание GTX 680 в данном тесте я объясняю просто - карточка сама регулирует частоты как ей вздумается (а способа повлиять на её поведение я не знаю), потому из-за скоротечности теста (он идёт менее двух секунд) она вполне могла не успеть перейти из 2Д режима (с пониженными частотами) в 3Д, а потому результат не был столь высок, как у GTX 280, которой я с помощью задал фиксированные частоты для всех режимов (602/1296/1107МГц).

Следующий тест, что я решил прогнать - легендарная программа Final Reality , очень симпатичный по меркам 1997 года тест. Настройки по-умолчанию:

Результат выступления карточек:

GeForce GTX 680 GeForce GTX 280

Вновь лидирует GTX 280, вероятно, всё по той же причине - более высокие фиксированные частоты. Хотя странно, что в истинно 3Д бенчмарке GTX 680 капризничала - возможно она работала не на всю мощь, в режиме наподобие того, что используется для просмотра BluRay?

Пришла пора 3DMark 2000 , хотел погонять и 99-й, но не смог завести его под Windows 7.

GeForce GTX 680 GeForce GTX 280

Первая победа ТОПа Nvidia! Преимущество мизерное, но оно имеется. Посмотрим, что будет в следующем поколении "Марка".

GeForce GTX 680 GeForce GTX 280

Новинка обходит соперника, но крайне незначительно, разница составляет менее 2000 очков. Ну хоть в 2003-м 3DMark"е продукт на базе Kepler сможет себя достойно показать?

GeForce GTX 680 GeForce GTX 280

Ну наконец-то видно, за что отданы немалые деньги! Разница в производительности между решениями очень велика - почти двукратная. По-идее, дальше в тестах отрыв GTX 680 от GTX 280 будет только увеличиваться. По-идее...

GeForce GTX 680 GeForce GTX 280

Что-то как-то не очень воодушевляет такой результат. Хотя, возможно, разница в ~6700 очков является в данном бенчмарке весомой.. не помню уже

3DMark 2006 более суров к видеокарте, чем его предшественник, поглядим на выступление ТОПов разных лет.

GeForce GTX 680 GeForce GTX 280

Вот тут уже чувствуется конкретный отрыв GTX 680 от старичка GTX 280. Почти 10000 очков преимущества - весомый аргумент в пользу GTX 680.

Пришла пора для более-менее современного теста, речь о 3DMark Vantage . Гоняться он будет на двух пресетах - Performance и Extreme.

Пресет Performance
GeForce GTX 680 GeForce GTX 280

Более чем двукратное преимущество новой видеокарты Nvidia над старой в относительно лёгком режиме. Что же будет в Extreme?

Пресет Extreme
GeForce GTX 680 GeForce GTX 280

Тут уже преимущество почти 4-х кратное, что не может не впечатлять. Судя по всему, в ~новых (с DX10) играх GTX 680 покажет себя значительно лучше продукта 2008 года.

Прогнав почти все "Марки", пришла пора приступить к тестам не от компании Futuremark. Кто-нибудь слышал про AquaMark3 ? Вот сейчас мы его и погоняем, настройки будут указаны на скриншотах ниже.

GeForce GTX 680 GeForce GTX 280

Забавное дело - GTX 680 немного, но проиграл GTX 280. Как такое может быть - может знает кто? Вряд ли тут карточка снижала частоты во время теста, так почему же производительность ниже?

Теперь поглядим, как обстоят дела у GTX 680 в Cinebench 10 . Проводился только Open GL тест.

GeForce GTX 680 GeForce GTX 280

И вновь мы видим преимущество GTX 280 над гораздо более новой, быстрой (как бы) и дорогой (тут уж сомнений нет) видеокартой. Может быть дела будут лучше в более свежей версии этого бенчмарка?

Тестирование в Cinebench 11.5 . Вновь я ограничился лишь Open GL тестом.

GeForce GTX 680 GeForce GTX 280

GTX 680 в кои-то веки одержал победу над GTX 280, правда отрыв невелик.

Обычно я использую дефолтные настройки во всех тестах, но данная софтина отказалась корректно работать на каких-либо установках, кроме этих. Вот результат выступления видеокарт:

GeForce GTX 680 GeForce GTX 280

Несмотря на то, что тест старый, GTX 680 всё-таки удалось одержать в нём победу - значение FPS выше, чем у GTX 280 во всех подтестах.

GeForce GTX 680 GeForce GTX 280

Как видно, общая оценка у GeForce GTX 680 выше, чем у соперника, однако не во всех тестах он оказался круче (в GDI победу одержал GTX 280).

GeForce GTX 680 GeForce GTX 280

На выполнение задачи у GTX 680 ушло ~4.8 секунды, а у GTX 280 - ~58.4. Результат на лицо. Хммм... а что если попробовать аппаратное кодирование видео посредством всё тех же CUDA ядер?

Для обозначенных выше целей я выбрал программу Badaboom 2.1 ... о чём потом пожалел, но было уже поздно.

GeForce GTX 680 GeForce GTX 280

Как Вы понимаете, я сначала проводил все тесты на GTX 280, чтобы потом уже поставить GTX 680 и погонять с теми же целями её, но всего не предусмотришь и оказалось, что GTX 680 программой Badaboom не поддерживается, ибо разработчики на своё детище забили и новых версий можно не ждать. Надо было использовать другой софт, но на момент осознания этой мысли было уже поздно что-либо менять.

Ладно, с кодированием видео не получилось, а что насчёт взлома паролей посредством всё тех же CUDA ядер? Чтобы ответить на данный вопрос, я задействовал утилиту Crark 3.4e. Для теста был создан архив типа RAR, задан пароль из трёх символов (usm) и... всё.

GeForce GTX 680 GeForce GTX 280

GTX 680 способна перебирать 8058 паролей в секунду, потому на взлом архива у неё ушло 33.64 секунды. GTX 280 провозился дольше, его способности более скромные - 3141 пароль в секунду, общее время работы 1 минута и ~11 секунд.

Далее я решил провести ещё один тест, направленный на выявление вычислительного потенциала GTX 680, для этого была выбрана софтина DirectCompute & OpenCL Benchmark 0.45 . Тест проводился на профиле cs_4_0, что доступен обеим видеокартам.

GeForce GTX 680 GeForce GTX 280

Казалось бы - всё здорово, новинка бьёт "старинку" своей невероятной многоCUDAядерной мощью, но вот незадача - после прохождения подтеста DirectCompute на GTX 680 вылезала вот такая ошибка:

При этом тест OpenCL заканчивался удачно:

В чём причина ошибки, мне неведомо. Казалось бы - ерундистика, но всё же как-то нехорошо, что такая штука случилась. Надеюсь, что дело в софте (мало ли, не совместим с новинкой от Nvidia), хотя если и так, то тут всё глухо - более новой версии программы не существует.

Следующая программа в списке тестов - Lightsmark 2008 , тут уже CUDA ядрам ничего считать не нужно, это обычный графический бенчмарк. Настройки по-умолчанию (видны на скриншотах ниже).

GeForce GTX 680 GeForce GTX 280

В этом тесте GTX 680 показала себя хорошо - мы видим более чем двукратный прирост FPS.

Теперь пришла пора программы LuxMark 2.0 . Тут вновь задействуются CUDA ядра изделий, происходят вычисления OpenCL.

GeForce GTX 680 GeForce GTX 280

И тут мы видим двукратное преимущество новинки над старым решением. Не обращайте внимания на частоты на левом скриншоте - они фиксируются программой при старте, а GTX 680 к тому моменту их ещё не поднимает, т.е. не активирует 3D режим.

Ещё откопал забавные тесты, которыми баловался очень давно. Это Performance Test 3.4 (2001 год) и куда более новый его вариант - Performance Test 7 (не самый последний билд - 1004, от 2009 года).

Performance Test 3.4
GeForce GTX 680 GeForce GTX 280

Т.к. большинство тестов в данном бенчмарке происходит в 2Д режиме, то из-за пониженных частот у GTX 680 (поднимать их карточка не хотела ни под каким предлогом), победу одержала GTX 280, частоты которой, как я уже писал, были одинаково высоки для всех режимов работы.

Performance Test 7
GeForce GTX 680 GeForce GTX 280

В данном тесте мы вновь видим преимущество GTX 280 в 2Д режиме, а вот в 3Д GTX 680 себя показал, как и следовало ожидать. В общем зачёте победила более новая карточка, хотя результат мог бы быть более разгромным, если бы она в 2Д режиме выставляла максимальные частоты по команде (из того же Afterburner"а).

Далее я провел бенчмарк, разработанный на основе SVP его же создателями. Речь об SVPMark 3 , использовалась последняя доступная версия утилиты (3.0.3). Настройки по-умолчанию:

Вот как всё прошло, камрады:

GeForce GTX 680 GeForce GTX 280

Уж не знаю, по какой причине (может быть дело в драйверах даже), но SVPMark 3, ровно как и SVP, не стал корректно работать с GTX 680, потому итоговой оценки мы не увидим. С другой стороны, видна оценка в синтетическом тесте GPU, она чуть-чуть выше у новинки от Nvidia. Откровенно говоря, такой результат не впечатляет.

Пришла пора игровых бенчмарков. Тут я мудрить не стал, что было под рукой - то и запускал. Первым в очереди стоит Devil May Cry 4 , вот настройки, что были выставлены для тестов (по-сути это дефолт, не считая 120Гц развёртки):

А вот и сами тесты:

GeForce GTX 680 GeForce GTX 280

Обе видеокарты показали, что эта игра для них является довольно-таки простой задачей, полученная оценка - S. Но видно, что у GTX 680 количество кадров в секунду сильно выше, а значит просадка производительности от включения всяких там AA и AF будет меньше, чем у GTX 280.

Результаты тестов:

GeForce GTX 680 GeForce GTX 280

Видно неплохое преимущество GTX 680 над более старым представителем ТОПов от Nvidia. Однако, не сказать, чтобы упомянутое преимущество было разгромным.

Третий игровой бенчмарк и третья игра в материале от Capcom, это Resident Evil 5 . Он запускался в DX10, настройки видны на скриншоте ниже:

Вот что показали видяхи:

GeForce GTX 680 GeForce GTX 280

Да уж - от GeForce GTX 680 я ожидал несколько более высокого результата, чем преимущество в 0.4 FPS. Не впечатляет, как ни крути. Причины столь схожих результатов у видеокарт разных лет мне неизвестны.

Четвёртый игровой тест, снова игра от Capcom. Шутка! На деле, это позабытый многими S.T.A.L.K.E.R.: Чистое небо . Почему не "Зов Припяти"? Он у меня отказался по неведомой причине работать, надо было его переустанавливать, но дистрибутива под рукой не оказалось, а время поджимало. Настройки бенчмарка:

DX10.1 я не включал, т.к. GTX 280 его не поддерживает, думаю это всем ясно. Вот результаты тестов:

GeForce GTX 680 GeForce GTX 280

Вот где меня порадовала новая видеокарта! Игры серии "Сталкер" мне нравятся, потому приросту FPS в них я очень рад.

Последний игровой бенчмарк, крайне редко использующийся тест на базе игры Final Fantasy XIV . Настройки ниже:

Тест довольно дубовый, идёт только в окне, а сфоткать результат крайне сложно (экран с цифрами пропадает по нажатию любой клавиши, в том числе и PrintScreen).

GeForce GTX 680 GeForce GTX 280

GeForce GTX 680 обогнал своего соперника более чем в два раза, отрадно видеть такую картину хотя бы тут.

Выводы

На деле, общие выводы о новой видеокарте делать рано, из-за своей обычной нагруженности в будние дни, я не успел толком погонять реальные игры. Что же касается проведённых тестов, то тут ситуация складывается следующим образом - GTX 680 побеждает, но не во всех тестах, причём в некоторых, особенно старых, преимущество над GTX 280 крайне незначительно. Обидно, что прикручивая поддержку новых версий DirectX, всяких там тесселяций и прочего добра, мало что меняется в плане производительности в приложениях, где новые API не задействованы.

Пример - есть у меня игра Star Wars: Empire at War с установленным модом Thrawn"s Revenge (отличная штука для поклонников расширенной вселенной SW, кстати). Знаете сколько выдаёт в нём кадров при максимальных настройках в Full HD видеокарта GTX 280? Около 5. А как дела у GTX 680? Обстоят они ровно таким же образом. Вероятно, это не лучший пример, ибо игра, скорее всего, чрезвычайно процессорозависима, а тест проводился в режиме космической битвы с сотнями истребителями и десятками кораблей основных классов. С другой стороны если не на обычном геймплее проводить замеры, то на чём?

На улице лето, за окном гроза, дует теплый влажный ветер, под боком в стенде стоит новая печка-грелка, извергающая на меня горячий воздух после снятия жара с 280-ти Ватт выделенного тепла, все одно к одному.

Мне нравятся Hi-End ускорители тем, что если его снять с компа сразу после работы (с руганью и дуя на обожженные пальцы), положить во всевозможные предохранительные пакеты, спасающие чудо технику прецизионного качества от повреждений, то даже после перевозки в течение часа — изделие будет теплым, как будто сейчас только что с фабрики или хлебопекарни. И даже иногда горячим. Так что все эти сотни Ватт — это вам не лампочку вывернуть и в кармане донести.

Мы внутри раздела в силу работы и служебных нужд иногда передаем друг другу видеокарты для тестов и прочих исследований, и подчас принимаешь ускоритель, а он внутри почти горячий еще… За время перевозки в машине не успел остыть… :)

Так вот, играм все нужно больше FPS, людям нужно больше красивой графики, а ускорителям нужно больше кушать, и потому компании-производители кулеров будут еще долго при делах, придумывая новые изощренные способы снять жар с огнедышащих драконов квадратной формы и вывести его за пределы корпуса (иногда и просто в корпус, чтобы там все спеклось). Скоро на видеокарты будем надевать такие же огромные 24-пиновые коннекторы, какими подрубаем питание к материнским платам. Уже пойдет речь о трехслотовых видеокартах, которым наверно потребуется уже особое крепление в корпусе. Да, вроде бы техпроцесс все уменьшается, но размеры видеокарт все растут и растут, ибо от них хотят все больше и больше.

Бедная Nvidia сделала очередного монстра, как в 2006 году — G80, чип очень дорогой — это видно по всем параметрам, судя по первой информации — карт в продажу после анонса пойдет очень мало, что говорит о невысоком проценте выхода годных. При этом, чтобы сбить спрос — цену на GTX 280 подняли до небес. Почему бедная? — ну потому что есть разница в ситуации в 2006 году и сейчас. Если тогда реально была нужда в новых супермощных картах, и G80 показал тогда реально революционный прорыв, то теперь это очередные плюс двадцать-тридцать процентов к… 9800 GTX. Да, даже не к 9800 GX2. Ниже мы все покажем детально. Хотя есть и тесты, где GTX 280 является полный лидером. И если ранее реально G80 (8800 GTX) — разбирался как горячие пирожки зимой, то теперь спрос явно будет не таким высоким. Хотя с учетом того, что в начале продаж карт вообще будет очень мало, Nvidia боится и такого спроса, потому цены подняты до 650 долларов США, что явно нелогично, ибо даже 9800 GX2 стоит дешевле.

Ну чтобы интригу разбавить практикой, мы перейдем к изучению карты. Теоретическую часть читатели уже изучили, поняли, что внутри одного такого квадратика со стороной в 3 см находится воплощение суперидей инженеров Nvidia, для которых потребовалось аж почти полтора миллиарда транзисторов, теперь посмотрим на то, а как он выглядит.

Платы

  • GPU: Geforce GTX 280 (GT200)
  • Интерфейс: PCI-Express x16
  • Частоты работы GPU (ROPs/Shaders): 600/1300 MHz (номинал — 600/1300 МГц)
  • Частоты работы памяти (физическая (эффективная)): 1100 (2200) MHz (номинал — 1100 (2200) МГц)
  • Ширина шины обмена с памятью: 512bit
  • Число вершинных процессоров: -
  • Число пиксельных процессоров: -
  • Число универсальных процессоров: 240
  • Число текстурных процессоров: 80 (BLF/TLF)
  • Число ROPs: 32
  • Размеры: 270x100x33 мм (последняя величина — максимальная толщина видеокарты).
  • Цвет текстолита: черный
  • RAMDACs/TMDS: вынесены в отдельный чип NVIO.
  • Выходные гнезда: 2xDVI (Dual-Link/HDMI), TV-out.
  • VIVO: нет
  • TV-out: интегрирован в GPU.
  • Поддержка многопроцессорной работы: SLI (Hardware).
Сравнение с эталонным дизайном, вид спереди
Reference Nvidia Geforce GTX 280 1024MB PCI-E
Сравнение с эталонным дизайном, вид сзади
Reference Nvidia Geforce GTX 280 1024MB PCI-E Reference card Nvidia Geforce 9800 GTX

Очевидно, что перед нами совершенно новый дизайн, не похожий ни на что ранее вапускаемое Nvidia, поскольку PCB несет в себе 512-битную шину обмена с памятью. Это заставляет размещать на текстолите 16 микросхем памяти, поэтому потребовался дизайн с двухсторонним монтажом микросхем (по 8 штук на каждой стороне). Поэтому длина карты осталась большой, да и PCB весьма дорогая. Не забываем, что Nvidia снова прибегла к способу разделения блоков GPU, и вынесла все блоки, отвечающие за вывод информации, в отдельную микросхему NVIO, как это было в случае G80 (8800 GTX/Ultra).

Выше показаны GPU и тот самый NVIO. Понятно, что размеры кристалла у GPU намного меньше — он закрыт крышкой, однако можно себе представить площадь ядра, вмещающего в себя почти 1,5 миллиарда транзисторов.

Теперь о кулере. Система охлаждения принципиально не отличается от того варианта, что мы видели еще на Geforce 8800 GTS 512. Да и форма кулера та же самая. Просто выросла длина радиатора в соответствии с размерами самой карты, ну и сзади установлена пластина для охлаждения микросхем памяти на обороте карты. Все устройство собрано так, что создает единый общий большой радиатор из крышек (задняя и передняя крышки защелкиваются, поэтому при разборе видеокарты и снятии кулера есть определенные сложности и нужен некий опыт, чтобы обнажить саму карту, не нанеся повреждений). Опыт создания 9800 GX2 с такими же защелками понравился инженерам.

Напоминаем еще раз важный момент: длина ускорителя — 270 мм, как у 8800 GTX/Ultra, поэтому в корпусе должно быть достаточно места для установки такой конструкции. А также обратим внимание на ширину кожуха, которая неизменна вдоль всей длины, а следовательно на материнской плате за PCI-E x16 разъемом не должно быть никаких портов и высоких конденсаторов, причем на ширину 30 мм (то есть не только за самим слотом PCI-E, но за соседним с ним не должно быть никаких высоких частей на системной плате).

Видеокарты этой серии оснащены гнездом для подключения звукового потока с аудио-карты для передачи его затем на HDMI (с помощью переходника DVI-to-HDMI), то есть сама видеокарта не оснащена аудио-кодеком, но осуществляет прием сигнала от внешней звуковой карты. Поэтому, если кому эта функция важна, следите за тем, чтобы в комплекте поставки видеокарты был аудио-шнурок для этих целей.

Также отметим, что питание ускорителя осуществляется с помощью ДВУХ разъемом, причем 6-пинового и 8-пинового. Поэтому также следует обращать внимание на наличие в комплекте поставки переходника питания на 8-пин.

У карты имеется гнездо TV-выхода, которое уникально по разъему, и для вывода изображения на ТВ как через S-Video, так и по RCA, требуются специальные адаптеры-переходники, поставляемые вместе с картой. Более подробно о ТВ-выходе можно почитать .

Подключение к аналоговым мониторам с d-Sub (VGA) производится через специальные адаптеры-переходники DVI-to-d-Sub. Также поставляются переходники DVI-to-HDMI (мы помним, что данные ускорители поддерживают полноценную передачу видео и звука на HDMI-приемник), поэтому проблем с такими мониторами также не должно быть.

Максимальные разрешения и частоты:

  • 240 Hz Max Refresh Rate
  • 2048 × 1536 × 32bit x85Hz Max — по аналоговому интерфейсу
  • 2560 × 1600 @ 60Hz Max — по цифровому интерфейсу (все DVI-гнезда с Dual-Link)

Что касается возможностей видеокарт по проигрыванию MPEG2 (DVD-Video), то еще в 2002 году мы изучали этот вопрос , с тех пор мало что поменялось. В зависимости от фильма загрузка CPU при проигрывании на современных видеокартах не поднимается выше 25%.

По поводу HDTV. Одно из исследований также проведено, и с ним можно ознакомиться .

Мы провели исследование температурного режима с помощью утилиты RivaTuner (автор А.Николайчук AKA Unwinder) и получили следующие результаты:

Стоит особо обратить внимание на то, на сколько снижаются частоты при работе в 2D (левый маркер на скриншоте) — до 100(!) МГц по шейдерному блоку и по памяти! Это реально снижает потребление карты до 110 Вт. Когда как в 3D при полной нагрузке ускоритель ест все 280 Вт! И при этом нагрев ядра достигает 80 градусов, что укладывается в норму, особенно если учесть, что кулер остается тихим. В этом плане карта безупречна, только лишь нужен очень мощный блок питания. Полагаем, что всем понятно, что ниже 700Вт даже нет смысла пробовать.

Поскольку карта поставляется в ОЕМ-виде как сэмпл, то о комплекте поставки речь не идет.

Установка и драйверы

Конфигурация тестового стенда:

  • Компьютер на базе Intel Core2 (775 Socket)
    • процессор Intel Core2 Extreme QX9650 (3000 MHz);
    • системная плата Zotac 790i Ultra а чипсете Nvidia nForce 790i Ultra;
    • оперативная память 2 GB DDR3 SDRAM Corsair 2000MHz (CAS (tCL)=5; RAS to CAS delay (tRCD)=5; Row Precharge (tRP)=5; tRAS=15);
    • жесткий диск WD Caviar SE WD1600JD 160GB SATA.
    • блок питания Tagan TG900-BZ 900W.
  • операционная система Windows Vista 32bit SP1; DirectX 10.1;
  • монитор Dell 3007WFP (30").
  • драйверы ATI версии CATALYST 8.5; Nvidia версии 175.16 (9ххх серия) и 177.34 (GTX 280).

VSync отключен.

Синтетические тесты

Используемые нами пакеты синтетических тестов можно скачать здесь:

  • D3D RightMark Beta 4 (1050) с описанием на сайте 3d.rightmark.org
  • D3D RightMark Pixel Shading 2 и D3D RightMark Pixel Shading 3 — тесты пиксельных шейдеров версий 2.0 и 3.0 ссылка .
  • RightMark3D 2.0 с кратким описанием:

Для работы RightMark3D 2.0 требуется установленный пакет MS Visual Studio 2005 runtime, а также последнее обновление DirectX runtime.

Синтетические тесты проводились на следующих видеокартах:

  • Nvidia Geforce GTX 280 GFGTX280 )
  • Nvidia Geforce 9800 GX2 со стандартными параметрами (далее GF9800GX2 )
  • Nvidia Geforce 9800 GTX со стандартными параметрами (далее GF9800GTX )
  • Nvidia Geforce 8800 Ultra со стандартными параметрами (далее GF8800U )
  • RADEON HD 3870 X2 со стандартными параметрами (далее HD3870X2 )
  • RADEON HD 3870 со стандартными параметрами (далее HD3870 )

Для сравнения результатов Geforce GTX 280 были выбраны именно эти модели видеокарт по следующим причинам: с Geforce 9800 GX2 её будет интересно сравнить, как с быстрейшей двухчиповой картой на GPU предыдущего поколения, с Geforce 9800 GTX — как с одночиповой, со старой моделью Geforce 8800 Ultra сравниваем для того, чтобы посмотреть разницу в пропускной способности, оценить влияние улучшений архитектуры. Ну а с RADEON HD 3870 и HD 3870 X2 сравнение интересно потому, что это быстрейшие одночиповое и двухчиповое решение от AMD на данный момент.

Direct3D 9: Тесты Pixel Filling

В тесте определяется пиковая производительность выборки текстур (texel rate) в режиме FFP для разного числа текстур, накладываемых на один пиксель:

Как обычно — не у всех видеокарт получаются значения, близкие к теоретическим. Чаще всего, результаты синтетики не дотягивают до теории, ближе всего к ним подбираются видеокарты на основе G80 и RV670, они не добирают до теории лишь 10-15%. А вот для видеокарт Nvidia, отличающихся улучшенными TMU, в нашем старом тесте теоретический максимум не достигается. Причём, не видно никаких улучшений в GT200, что G92 в нашем тесте выбирает лишь около 32 текселей за один такт из 32-битных текстур при билинейной фильтрации, что GT200 не дотягивает до теоретических способностей. Впрочем, возможно, виноват наш устаревший тест.

Тем не менее, Geforce GTX 280 слишком близок к Geforce 9800 GTX, а с одной текстурой он вообще проигрывает даже Geforce 8800 Ultra, несмотря на большую ПСП! А ведь в таких случаях карты ограничены пропускной способностью видеопамяти… В случае с большим количеством текстур на пиксель, способности блоков ROP раскрываются полнее, и в более тяжелых условиях карта на GT200 становится быстрейшей (если учесть некорректный результат теста двухчиповой видеокарты Nvidia). Двухчиповую же карту от AMD новинка опережает во всех протестированных режимах. Посмотрим на результаты в тесте филлрейта:

Второй синтетический тест измеряет скорость заполнения, и в нём мы видим ту же самую ситуацию, но уже с учетом количества записанных в буфер кадра пикселей. Странно, что в случаях с 0 и 1 накладываемыми текстурами у Geforce GTX 280 получился такой низкий результат, обычно в таких режимах производительность ограничена ПСП, а также количеством и рабочей частотой блоков ROP. А с этим у нового решения всё в порядке…

Но получается всё так же, как и в предыдущем тесте — лишь в ситуациях с большим количеством текстур на пиксель, Geforce GTX 280 немного выигрывает у ближайших конкурентов, хотя должен бы отрываться сильнее.

Direct3D 9: Тесты Geometry Processing Speed

Рассмотрим пару предельных геометрических тестов, и первым у нас будет самый простой вершинный шейдер, показывающий максимальную пропускную способность по треугольникам:

Все современные чипы основаны на унифицированных архитектурах, их универсальные исполнительные блоки в этом тесте заняты только геометрической работой, и решения показывают высокие результаты, явно упирающиеся не в пиковую производительность унифицированных блоков, а в производительность других блоков, например, triangle setup.

Собственно, результаты в очередной раз подтверждают то, что чипы AMD быстрее обрабатывают геометрию, по сравнению с чипами Nvidia, а двухчиповые решения в AFR режиме эффективно удваивают частоту кадров. Geforce GTX 280 проигрывает двухчиповым картам, опережает решение на G80 и находится на одном уровне с быстрейшей из одночиповых карт на основе G92. Получается, что этот тест зависит исключительно от тактовой частоты GPU. Что интересно, эффективность выполнения теста в разных режимах у GT200 больше походит на ту, что показывает G80, но не G92.

Мы убрали из рассмотрения промежуточные тесты на скорость обработки геометрии с одним источником освещения, и сразу же переходим к рассмотрению самой сложной геометрической задачи с тремя источниками света, включающей статические и динамические переходы:

В этом варианте разница между решениями AMD и Nvidia видна лучше, разрыв немного увеличился. Geforce GTX 280 показывает лучший результат из карт Nvidia, чуть-чуть опережая Geforce 9800 GTX и 8800 Ultra, кроме FFP теста, который сейчас уже никого не интересует. В целом, новый чип неплохо проявляет себя в данных геометрических тестах. Но в реальных приложениях универсальные шейдерные процессоры заняты в основном пиксельными расчетами, к исследованию производительности которых мы и переходим.

Direct3D 9: Тесты Pixel Shaders

Первая группа пиксельных шейдеров, которую мы рассматриваем, является очень простой для современных видеочипов, она включает в себя различные версии пиксельных программ сравнительно низкой сложности: 1.1, 1.4 и 2.0.

Тесты слишком просты для современных архитектур и не показывают их истинную силу. Это хорошо видно по первым двум тестам (Wood и Psychodelic), результаты которых почти на всех решениях одинаковые. Кроме того, в простых тестах производительность ограничена скоростью текстурных выборок, что видно по слабым результатам RADEON HD 3870 X2, показавшем результат на уровне одночиповых решений Nvidia.

В более сложных тестах Geforce GTX 280 показывает неплохие результаты, опережая и топовую карту на G92, и карту на G80. Причём, с увеличением сложности задачи, отрыв GT200 от предыдущих чипов явно растёт. Хотя двухчипового 9800 GX2 карта не догоняет ни в одном из тестов. Посмотрим на результаты тестов более сложных пиксельных программ промежуточных версий:

В сильно зависящем от скорости текстурирования тесте процедурной визуализации воды «Water» используется зависимая выборка из текстур больших уровней вложенности, поэтому карты расположились строго по скорости текстурирования, как было на самом первом графике. Единственный RADEON, даже будучи двухчиповым, отстаёт от всех решений на основе G92, G80 и GT200. Ну а рассматриваемая сегодня видеокарта проигрывает только двухчиповой 9800 GX2, опережая одночиповых собратьев, точно по теории.

Второй тест, более интенсивный вычислительно, явно лучше подходит для архитектуры R6xx и GT200, обладающих большим количеством вычислительных блоков. В этом тесте решение AMD показывает лучший результат, далее следует также двухчиповая карта, но от Nvidia. Но самое приятное в том, что Geforce GTX 280 проигрывает им совсем чуть-чуть! Неплохой результат, GT200 быстрее одного G92 в этом тесте в 1.7 раза, как Nvidia и писала в своих презентациях. А вот эффективности SLI для 9800 GX2 явно не достаёт.

Direct3D 9: Тесты пиксельных шейдеров New Pixel Shaders

Эти тесты пиксельных шейдеров DirectX 9 ещё сложнее, они делятся на две категории. Начнем с более простых шейдеров версии 2.0:

  • Parallax Mapping — знакомый по большинству современных игр метод наложения текстур, подробно описанный в статье
  • Frozen Glass — сложная процедурная текстура замороженного стекла с управляемыми параметрами

Существует два варианта этих шейдеров: с ориентацией на математические вычисления, и с предпочтением выборки значений из текстур. Рассмотрим математически интенсивные варианты, более перспективные с точки зрения будущих приложений:

Положение видеокарт в тесте «Frozen Glass» отличается от результатов предыдущих тестов. Несмотря на то, что это математические тесты, зависящие от частоты шейдерных блоков, Geforce GTX 280 выигрывает у 9800 GTX совсем немного, а двухчиповый 9800 GX2 далеко впереди них обоих. Видимо, производительность ограничена не только математикой, но и скоростью текстурных выборок. RADEON HD 3870 X2 показывает самый слабый результат.

Зато во втором тесте «Parallax Mapping» решение AMD заметно сильнее, хоть и снова позади лучших карт Nvidia. Но в этот раз оно проигрывает только новой видеокарте и двухчиповому решению. Улучшения в TMU и внутричиповых кэшах сказались на результате GTX 280, она обогнала двухчиповый RADEON и немного отстаёт от аналогичного решения на двух G92. Рассмотрим эти тесты в модификации с предпочтением выборок из текстур математическим вычислениям, там видеокарты на основе G92 должны показать более высокие относительные результаты:

Положение немного изменилось, мы видим явный упор производительности в скорость текстурных блоков. Geforce GTX 280 во всех тестах прилично опережает решение AMD и немного — всех одночиповых собратьев. А вот впереди всех — двухчиповый Geforce 9800 GX2. Надо заметить, что для всех решений варианты шейдеров с большим количеством математических вычислений работают быстрее в 1.5-2 раза, по сравнению с их «текстурными» вариантами.

Рассмотрим результаты ещё двух тестов пиксельных шейдеров — версии 3.0, самых сложных из наших тестов пиксельных шейдеров для Direct3D 9. Тесты отличаются тем, что сильно нагружают и ALU и текстурные модули, обе шейдерные программы сложные, длинные, включают большое количество ветвлений:

  • Steep Parallax Mapping — значительно более «тяжелая» разновидность техники parallax mapping, также описанная в статье
  • Fur — процедурный шейдер, визуализирующий мех

Хотя решения AMD обеспечивают эффективное исполнение сложных пиксельных шейдеров версии 3.0 с большим количеством ветвлений, Geforce 9800 GTX показывает результат на одном уровне с двухчиповой картой на базе RV670. Это можно объяснить ускоренными билинейными текстурными выборками в архитектуре G9x и большей эффективностью использования имеющихся ресурсов, обусловленную разницей между скалярной и суперскалярной архитектурами.

Двухчиповый Geforce 9800 GX2 почти удваивает производительность, являясь лидером в обоих тестах, ну а рассматриваемый сегодня Geforce GTX 280 логично расположился посередине между этими решениями. Хотелось бы большей разницы между скоростью GT200 и G92, конечно… Хотя бы в 1.6-1.7 раз.

Direct3D 10: Тесты пиксельных шейдеров PS 4.0 (текстурирование, циклы)

В новую версию RightMark3D 2.0 вошли два знакомых PS 3.0 теста под Direct3D 9, которые были переписаны под DirectX 10, а также ещё два полностью новых теста. В первую пару добавились возможности включения самозатенения и шейдерного суперсэмплинга, что дополнительно увеличивает нагрузку на видеочипы.

Данные тесты измеряют производительность выполнения пиксельных шейдеров с циклами, при большом количестве текстурных выборок (в самом тяжелом режиме до нескольких сотен выборок на пиксель!) и сравнительно небольшой загрузке ALU. Иными словами, в них измеряется скорость текстурных выборок и эффективность ветвлений в пиксельном шейдере.

Первым тестом пиксельных шейдеров будет Fur. При самых низких настройках в нём используется от 15 до 30 текстурных выборок из карты высот и две выборки из основной текстуры. Режим Effect detail — «High» увеличивает количество выборок до 40-80, включение «шейдерного» суперсэмплинга — до 60-120 выборок, а режим «High» совместно с SSAA отличается максимальной «тяжестью» — от 160 до 320 выборок из карты высот.

Проверим сначала режимы без включенного суперсэмплинга, они относительно просты, и соотношение результатов в режимах «Low» и «High» должно быть примерно одинаковым.

Результаты в «High» получились почти в полтора раза ниже, чем в «Low». В остальном — Direct3D 10 тесты процедурной визуализации меха с большим количеством текстурных выборок снова показывают огромное преимущество решений Nvidia над AMD. Производительность в этом тесте зависит не только от количества и скорости блоков TMU, но и от филлрейта и ПСП. Сравнение результатов Geforce 9800 GTX и 8800 Ultra указывает на это.

У героя обзора Geforce GTX 280 очень хорошие результаты в этом тесте, он лишь чуть-чуть отстал от двухчипового Geforce 9800 GX2, обогнав одночиповое решение на G92 на 60-70%. Посмотрим на результат этого же теста, но с включенным «шейдерным» суперсэмплингом, увеличивающим работу в четыре раза, возможно в такой ситуации что-то изменится, и ПСП с филлрейтом будут влиять меньше:

Включение суперсэмплинга теоретически увеличивает нагрузку в четыре раза, но на видеокартах Nvidia скорость снижается чуть сильнее, чем на AMD, за счет чего отрыв между ними сокращается, и HD 3870 вместе с X2 вариантом совсем немного подтягиваются вверх. Но преимущество карт Nvidia никуда не делось, оно подавляющее.

В остальном, с увеличением сложности шейдера и нагрузки на видеочип, разница между Geforce GTX 280 и всеми остальными картами Nvidia очень сильно растёт. Теперь новый GTX опережает старый в 2.5 раза! Вот что значит архитектура, переработанная для исполнения сложнейших шейдеров. Даже двухчиповый 9800 GX2 повержен с большим преимуществом.

Второй тест, измеряющий производительность выполнения сложных пиксельных шейдеров с циклами при большом количестве текстурных выборок называется Steep Parallax Mapping. При низких настройках он использует от 10 до 50 текстурных выборок из карты высот и три выборки из основных текстур. При включении тяжелого режима с самозатенением, число выборок возрастает в два раза, а суперсэмплинг увеличивает это число в четыре раза. Наиболее сложный тестовый режим с суперсэмплингом и самозатенением выбирает от 80 до 400 текстурных значений, то есть в восемь раз больше, по сравнению с простым режимом. Проверяем сначала простые варианты без суперсэмплинга:

Этот тест даже интереснее с практической точки зрения, ведь разновидности parallax mapping давно применяются в играх, а тяжелые варианты, вроде нашего steep parallax mapping используются в некоторых проектах, например, в Crysis и Lost Planet. Кроме того, в нашем тесте, помимо суперсэмплинга, можно включить самозатенение, увеличивающее нагрузку на видеочип примерно в два раза, такой режим называется «High».

Повторилась ситуация предыдущего теста. Хотя решения AMD ранее были сильны в Direct3D 9 тестах parallax mapping, в обновленном D3D10 варианте без суперсэмплинга они не могут справиться с нашей задачей на уровне видеокарт Geforce. Кроме того, включение самозатенения вызывает на продукции AMD большее падение производительности, по сравнению с разницей для решений Nvidia.

Рассматриваемый нами сегодня Geforce GTX 280 уже без включения суперсэмплинга начинает опережать всех, включая Geforce 9800 GX2, обгоняя 9800 GTX и 8800 Ultra в тяжелом режиме более чем в два раза. Посмотрим, что изменит включение суперсэмплинга, в прошлом тесте он вызывал большее падение скорости на картах Nvidia.

При включении суперсэмплинга и самозатенения задача получается более тяжёлой, совместное включение сразу двух опций увеличивает нагрузку на карты почти в восемь раз, вызывая большое падение производительности. Разница между скоростью разных видеокарт уже несколько другая. Включение суперсэмплинга сказывается как и в предыдущем случае — карты производства AMD улучшают свои показатели относительно решений Nvidia. HD 3870 продолжает отставать от всех Geforce, зато двухчиповый X2 почти на одном уровне с 8800 Ultra и 9800 GTX.

Что касается сравнения Geforce GTX 280 с предыдущими топами на базе одного чипа G80 или G92, они оба повержены с 2-3 кратным преимуществом! А в High режиме новая видеокарта намного быстрее и двухчиповой на G92. Снова просто отличный результат, показывающий, насколько хорошо GT200 разбирается с такими сложнейшими задачами.

Direct3D 10: Тесты пиксельных шейдеров PS 4.0 (вычисления)

Следующая пара тестов пиксельных шейдеров содержит минимальное количество текстурных выборок для снижения влияния производительности блоков TMU. В них используется большое количество арифметических операций, и измеряют они именно математическую производительность видеочипов, скорость выполнения арифметических инструкций в пиксельном шейдере.

Первый математический тест — Mineral. Это тест сложного процедурного текстурирования, в котором используются лишь две выборки из текстурных данных и 65 инструкций типа sin и cos.

Ранее, при анализе результатов наших синтетических тестов, мы не раз отмечали, что в вычислительно сложных задачах современная архитектура AMD показывает себя зачастую лучше конкурирующей от Nvidia. Но время идёт, и ситуация меняется, теперь в соперничестве RADEON HD 3870 и любого из Geforce, решение AMD уступает. Зато двухчиповый HD 3870 X2 хорош (спасибо AFR), почти на одном уровне с двухчиповым же Geforce 9800 GX2.

Но нас с вами сегодня интересует производительность Geforce GTX 280. И она просто отличная, видеокарта на основе нового чипа GT200 почти догоняет двухчиповые карты прошлого поколения, опережая «старую» Geforce 8800 Ultra и «почти новую» Geforce 9800 GTX на 60-70%, что примерно соответствует разнице в чистой мощности шейдерных блоков, их количеству и тактовой частоте.

Второй тест шейдерных вычислений носит название Fire, и он ещё более тяжёл для ALU. В нём текстурная выборка только одна, а количество инструкций типа sin и cos увеличено вдвое, до 130. Посмотрим, что изменилось при увеличении нагрузки:

В общем, в данном тесте скорость рендеринга явно ограничена производительностью шейдерных блоков. Со времени выхода RADEON HD 3870 X2 ошибка в драйверах AMD была исправлена, результат их решений AMD стал подобающим теории, и теперь RADEON HD 3870 в этом тесте показывает скорость даже выше, чем у всех Geforce 8800 и 9800.

Но не Geforce GTX 280, опережающий одночиповых предшественников от Nvidia более чем в 1.5 раза, что также близко к теоретической разнице в шейдерной производительности. Лидером же является двухчиповый RADEON HD 3870 X2. И вероятно, что с появлением новых решений AMD, пальма первенства в математических тестах перейдёт к ним.

Direct3D 10: Тесты геометрических шейдеров

В пакете RightMark3D 2.0 есть два теста скорости геометрических шейдеров, первый вариант носит название «Galaxy», техника аналогична «point sprites» из предыдущих версий Direct3D. В нем анимируется система частиц на GPU, геометрический шейдер из каждой точки создает четыре вершины, образующих частицу. Аналогичные алгоритмы должны получить широкое использование в будущих DirectX 10 играх.

Изменение балансировки в тестах геометрических шейдеров не влияет на конечный результат рендеринга, итоговая картинка всегда абсолютно одинакова, изменяются лишь способы обработки сцены. Параметр «GS load» определяет, в каком из шейдеров производятся вычисления — в вершинном или геометрическом. Количество вычислений всегда одинаково.

Рассмотрим первый вариант теста «Galaxy», с вычислениями в вершинном шейдере, для трёх уровней геометрической сложности:

Начинается самое интересное, ведь в Nvidia пообещали увеличение эффективности исполнения геометрических шейдеров. Впрочем, график показывает, что первый тест слабо использует эти возможности, и нам придётся подождать второго. Соотношение скоростей при разной геометрической сложности сцен примерно одинаковое. Производительность соответствует количеству точек, с каждым шагом падение FPS составляет около двух раз. Задача для современных видеокарт не очень сложная и ограничение скорости мощностью потоковых процессоров в тесте не явное, задача ограничена также и ПСП и филлрейтом, хотя и в меньшей степени.

Geforce GTX 280 показывает результат на уровне двухчиповой RADEON HD 3870 X2, что более чем в два раза быстрее одиночной HD 3870. По скорости среди собратьев от Nvidia, результат анонсированной карты лёг точно между одиночной картой на базе чипа G92 и двухчиповой версией. В целом — не так плохо, хотя хотелось бы достижения производительности 9800 GX2. Возможно, при переносе части вычислений в геометрический шейдер ситуация изменится, посмотрим:

Разница между рассмотренными вариантами теста невелика, существенных изменений не произошло. Все видеокарты Nvidia показывают почти те же результаты при изменении параметра GS load, отвечающем за перенос части вычислений в геометрический шейдер. Зато результаты обеих видеоплат AMD немного выросли, и RADEON HD 3870 отстаёт уже меньше, а двухчиповая HD 3870 X2 даже немного впереди Geforce GTX 280. Посмотрим, что изменится в следующем тесте, который предполагает большую нагрузку именно на геометрические шейдеры…

«Hyperlight» — это второй тест геометрических шейдеров, демонстрирующий использование сразу нескольких техник: instancing, stream output, buffer load. В нем используется динамическое создание геометрии при помощи отрисовки в два буфера, а также новая возможность Direct3D 10 — stream output. Первый шейдер генерирует направление лучей, скорость и направление их роста, эти данные помещаются в буфер, который используется вторым шейдером для отрисовки. По каждой точке луча строятся 14 вершин по кругу, всего до миллиона выходных точек.

Новый тип шейдерных программ используется для генерации «лучей», а с параметром «GS load», выставленном в «Heavy» — ещё и для их отрисовки. То есть, в режиме «Balanced» геометрические шейдеры используются только для создания и «роста» лучей, вывод осуществляется при помощи «instancing», а в режиме «Heavy» выводом также занимается геометрический шейдер. Сначала рассматриваем лёгкий режим:

Относительные результаты в разных режимах соответствуют нагрузке: во всех случаях производительность неплохо масштабируется и близка к теоретическим параметрам, по которым каждый следующий уровень «Polygon count» должен быть в два раза медленней. Производительность Geforce 9800 GX2 в этот раз провалилась куда-то глубоко-глубоко, возможно, на новых драйверах ситуация будет иной. Обе карты производства AMD также отстают от всех решений Nvidia.

Если сравнивать все платы на G80, G92 и GT200, наглядно видно, что упор в тесте получается во что-то отличное от ПСП, филлрейта и вычислительной мощности — все карты практически равны. Хотя и несколько удивительно, что в тяжелом режиме GT200 немного проигрывает G92… Цифры могут измениться на следующей диаграмме, в тесте с более активным использованием геометрических шейдеров. Также будет интересно сравнить друг с другом результаты, полученные в «Balanced» и «Heavy» режимах.

Ну вот, дождались! Впервые в геометрических тестах, соотношение скоростей между GT200 и всеми остальными изменилось так, как было задумано инженерами Nvidia, когда они устраняли недостатки предыдущих архитектур. Geforce GTX 280 более чем в два раза быстрее и Geforce 9800 GTX и 8800 Ultra. Мало того, он опережает и двухчиповый RADEON HD 3870 X2. Вероятно, выиграл бы и у 9800 GX2 по-честному, даже без помощи драйверных проблем последнего в этом тесте.

Что касается сравнения результатов в разных режимах, тут всё как всегда, в конкурентной борьбе одночиповой видеоплате AMD не помогает и то, что при переходе от использования «instancing» к геометрическому шейдеру при выводе, видеокарты Nvidia (кроме новой на GT200) теряют в производительности. У всех карт Geforce на основе чипов G92 и G80 скорость в «Balanced» режиме получается выше, чем в «Heavy» у RADEON HD 3870. При этом, получаемая в разных режимах картинка не отличается визуально.

Много интереснее поведение Geforce GTX 280 в «Balanced» и «Heavy». Это — первая видеокарта Nvidia, получившая прирост производительности от переноса части вычислений в геометрический шейдер в данном тесте. Снова налицо работа над ошибками у Nvidia, как это было ранее уже не раз! Кое-кому надо бы поучиться у них, а не продолжать наступать на одни и те же грабли уже которое поколение…

Direct3D 10: Скорость выборки текстур из вершинных шейдеров

В тестах «Vertex Texture Fetch» измеряется скорость большого количества текстурных выборок из вершинного шейдера. Тесты схожи по сути и соотношение между результатами карт в тестах «Earth» и «Waves» должно быть примерно одинаковым. В обоих тестах используется на основании данных текстурных выборок, единственное существенное отличие состоит в том, что в тесте «Waves» используются условные переходы, а в «Earth» — нет.

Рассмотрим первый тест «Earth», сначала в режиме «Effect detail Low»:

Судя по предыдущим исследованиям, на результаты этого теста сильно влияет пропускная способность памяти, и чем проще режим, тем большее влияние на скорость она оказывает. Это хорошо заметно по сравнительным результатам Geforce 9800 GTX и Geforce 8800 Ultra, если в простом режиме вторая выигрывает за явным преимуществом в ПСП, в среднем результаты сближаются, а в самом сложном они уже почти равны.

Двухчиповая 9800 GX2 не особо вырывается вперёд, хотя HD 3870 X2 показывает двукратный прирост по сравнению с HD 3870. Вероятно, недостатки драйверов, точнее — режима AFR. Тем не менее, даже Geforce 8800 Ultra показывает результат лучше, чем HD 3870 X2, а за рассматриваемой сегодня Geforce GTX 280 можно закрепить формальное лидерство. Посмотрим на результаты этого же теста с увеличенным количеством текстурных выборок:

Ситуация изменилась не слишком сильно, в лёгком режиме продолжает лидировать GTX 280, но в сложном 9800 GX2 уже выходит вперёд. Впрочем, Geforce GTX 280 всё равно быстрее обоих конкурентов от AMD и немного впереди одночиповых собратьев линеек Geforce 8 и 9. Как и в прошлый раз, по мере усложнения задачи, результаты карт уплотняются.

Рассмотрим результаты второго теста текстурных выборок из вершинных шейдеров. Тест «Waves» отличается меньшим количеством выборок, зато в нём используются условные переходы. Количество билинейных текстурных выборок в данном случае до 14 («Effect detail Low») или до 24 («Effect detail High») на каждую вершину. Сложность геометрии изменяется аналогично предыдущему тесту.

А вот тест «Waves» благосклоннее к продукции AMD, одночиповая модель семейства RADEON HD 3800 смотрится неплохо, опережая решение на базе G92 в лёгком режиме, немного уступая в тяжёлом. Ясно видно, что в этом тесте скорость зависит не столько от мощности TMU, сколько от ПСП и филлрейта, так как даже двухчиповая карта на двух G92 показала результат на уровне решения предпредыдущего поколения — Geforce 8800 Ultra. Наш герой Geforce GTX 280 впереди всех в легчайшем режиме, но в остальных двух уступает двухчиповому RADEON. Рассмотрим второй вариант этого же теста:

Изменений немного, но с увеличением сложности теста результаты видеоплат серии RADEON HD 3800 стали ещё чуть лучше относительно скорости карт Nvidia. Последние потеряли в скорости несколько больше. Все остальные выводы также остаются в силе — скорость более всего ограничивается ПСП, в лёгком режиме сильнее, а в тяжёлых большую роль начинают играть блоки TMU и «двухчиповость», поэтому 9800 GX2 догоняет GTX 280, а HD 3870 X2 и вовсе опережает. В тестах VTF положение плат AMD серьёзно улучшилось, если ранее мы замечали, что решения Nvidia лучше справляются с тестами текстурных выборок из вершинных шейдеров, теперь ситуация иная.

Выводы по синтетическим тестам

На основе результатов синтетических тестов Geforce GTX 280, а также других моделей видеокарт обоих основных производителей видеочипов, мы можем сделать вывод, что новое решение Nvidia получилось очень мощным. В синтетических тестах оно значительно опережает по скорости одночиповые варианты предыдущего поколения, иногда до двух раз и даже более, часто борется на равных с двухчиповыми продуктами. Это стало возможным благодаря улучшенной архитектуре GT200 с увеличенным количеством исполнительных блоков ALU, TMU и ROP. Все модификации и улучшения позволяют рассмотренной видеокарте показывать отличные результаты во всех синтетических тестах.

Совсем не только увеличенное количество исполнительных блоков повлияло на рост скорости, но и улучшенная по сравнению с G8x и G9x архитектура, отличающаяся более высокой эффективностью, вычислительной производительностью, важной для современных и будущих приложений с большим количеством сложных шейдеров всех типов. В архитектуру GT200 были внесены изменения почти во все блоки, мощнее стали и шейдерные процессоры, и текстурные и блоки ROP, и многое другое.

Кроме модификаций, направленных на дальнейшее увеличение производительности, Nvidia уделила внимание и устранению досадных недостатков в G8x/G9x. Благодаря этому, видеоплаты на основе чипа GT200 показывают лучшие результаты в условиях очень сложных шейдеров, и особенно — сложных геометрических шейдеров с созданием геометрии «на лету». Это первый видеочип от Nvidia, который получил прирост производительности от переноса части вычислений в геометрический шейдер в одном из наших синтетических тестов. И тем более приятно, что сама компания использует наш тест для внутренних целей.

В целом, новая видеокарта Geforce GTX 280 отлично сбалансирована, особенно для будущих приложений, более требовательных к шейдерной производительности. Она обладает большим количеством всех исполнительных блоков, очень широкой шиной обмена с памятью, а следовательно, и высокой ПСП, на ней установлено оптимальное для high-end решения количество локальной видеопамяти. Технических недостатков у решения не так много, единственное, чего хотелось бы — слегка большей рабочей частоты для видеочипа в целом и шейдерных блоков в частности. Но это — вопрос скорее к технологическому процессу…

Следующая часть нашей статьи содержит тесты нового решения компании Nvidia в современных игровых приложениях. Эти результаты должны примерно соответствовать выводам, сделанным при анализе результатов синтетических тестов, с поправкой на большее влияние филлрейта и ПСП. Скорость рендеринга в играх сильнее зависит от скорости текстурирования и филлрейта, чем от мощности ALU и блоков обработки геометрии. И, судя по результатам в синтетике, можно предположить, что скорость Geforce GTX 280 в играх будет где-то между Geforce 9800 GTX и 9800 GX2, но ближе к последнему. То есть, в среднем, GT200 должен быть быстрее G92 на 60-80%.

Блок питания для тестового стенда предоставлен компанией TAGAN
Монитор Dell 3007WFP для тестовых стендов предоставлен компанией

Так уж сложилось, что в последнее время на рынке 3D-ускорителей «балом правит» компания NVIDIA. Именно она выпускает самые быстрые современные видеокарты, порождая множество споров об их целесообразности, так как пользователям давно уже приходится мириться с тем, что "быстро" одновременно означает "очень горячо" и "очень дорого".

Объекты данного материала самые яркие представители этой категории. Мы познакомим вас с абсолютно новым High-End видеоадаптером GeForce GTX 280, и его предшественником в лице GeForce 9800 GX2. Обе эти карты сейчас самые дорогие на рынке, но при этом и самые быстрые. Старая карта демонстрирует такую мощь благодаря двум графическим чипам G92, а в основе новой - GPU последнего поколения GT200. Но обе отличаются огромными габаритами, "горячим нравом" и высоким энергопотреблением. Кто же быстрее и мощнее из этих двух монстров, мы и выясним ниже.

Особенности архитектуры GT200

После G80 NVIDIA не торопилась с кардинальными изменениями в архитектуре своих графических процессоров. Популярный G92 практически повторял предшественника, лишь ROP и текстурные блоки были немного улучшены. Новый же чип представляет собой следующее поколение универсальной шейдерной архитектуры, хотя, на самом деле, в основе его все так же лежит базовая архитектура G80.


Ядро GT200 состоит из десяти больших кластеров TPC (Texture Processing Clusters), что на два кластера больше, чем у представителей прошлого поколения. Строение этих вычислительных блоков аналогично предшественникам, но потоковых процессоров (SP) стало больше. На каждый TPC приходится по три потоковых мультипроцессорных юнита (SM), каждый из которых состоит из трех стрим-процессоров. Итого, в общем, получаем 240 универсальных потоковых процессоров. Для каждого SM-юнита выделена своя память объемом 16 КБ.


Основные изменения в шейдерных блоках коснулись модернизации локального регистрового файла, что дало прирост производительности при выполнении сложных программ-шейдеров. Также новый чип обладает возможностью выполнения двух инструкций за такт в одном шейдере. Точность вычислений с плавающей запятой увеличено до 64 бит.

Блоки TMU и ROP остались такими же, как и G92, но их количество было увеличено: до 80 текстурных блоков (по восемь на каждый TPC) и до 32 блоков растеризации, по восемь на каждый широкий ROP. Благодаря улучшениям текстурных блоков, NVIDIA говорит о 22% превосходстве в текстурировании относительно предшественника. Эффективность блоков ROP увеличена в возможности вывода до 32 пикселей с блендингом за такт, тогда как тот же G80 мог выводить только 24 пикселя и 12 с блендингом. Все вышесказанное касается старшего представителя на базе GT200 - GeForce GTX 280. Более доступное решение GeForce GTX 260 отличается чуть меньших числом функциональных блоков.

Но не только возможности по обработке графических задач были улучшены в новом чипе. Благодаря технологии CUDA, GT200 теперь может похвастаться поддержкой и других вычислительных задач. В таком режиме он работает как мультипроцессор с 240 вычислительными ядрами. Это позволит использовать эти видеокарты в специализированных расчетах. Справедливости ради, стоит отметить, что акселераторы Radeon уже давно обладают такой возможностью.

Большие вычислительные возможности чипа подтолкнули компанию на организацию расчетов физики в играх силами GPU. Эта технология является развитием технологии PhysX компании Ageia, которую недавно купила NVIDIA. Хотя тот факт, что энтузиастам удалось "взломать" драйверы NVIDIA и ввести поддержку аппаратного расчета физической модели в видеокарты Radeon, говорит о том, что PhysX не относится к каким-либо аппаратным особенностям графического чипа GT200, а является лишь соответствующей адаптацией программного API PhysX под универсальную щейдерную архитектуру.

Теперь, что касается еще одного нововведения. Шина памяти 512 бит (восемь 64-битных контроллеров памяти) при использовании GDDR3 позволила достичь пропускной способности в 141,67 Гб/с, и по этому критерию решение NVIDIA является лидером на рынке графических акселераторов. Но тут стоит отметить, что AMD пошла другим путем, и в своем новой графическом чипе RV770 ввела поддержку сверхбыстрой памяти GDDR5. Возможно, с выпуском новых GPU калифорнийцы также перейдут на использование прогрессивного типа памяти. Объем памяти у видеокарт GeForce GTX 280 составляет 1 ГБ, что для Hi-end решений становится уже нормой, учитывая аппетиты современных игровых приложений при выборе качественной графики. GeForce GTX 260 довольствуется лишь 896 мегабайтами памяти, при этом шина памяти составляет 448 бит.

GT200 выполняется по нормам 65-нм техпроцесса. В этом плане AMD пока лидирует - их новые чипы выполнены по 55-нм техпроцессу. Обладая огромных количеством транзисторов (1,4 млрд.) новый чип NVIDIA имеет громадную площадь в 576 кв. мм., а ширина кристалла достигает 2,4 см! С таким огромным ядром добиться выхода большого процента исправных чипов довольно тяжело, поэтому производство GT200 достаточно дорогое, что выливается в высокую окончательную стоимость готового продукта. Ниже приведено фото кристалла со схемой размещения его главных вычислительных блоков.


При таких размерах остро встает вопрос отведения тепла от кристалла. Да и энергопотребление у GT200 самое большое среди всех существующих чипов. Плата на базе GT200 в 3D потребляет до 236 Вт, а в 2D около 25 Вт: в зависимости от загрузки драйвер изменяет рабочую частоту чипа в большую или меньшую сторону. Опять же, подобные технологии уже давно прижились в продуктах ATI/AMD.

Также большой размер кристалла вынудил вынести блоки, отвечающие за интерфейсы (два RAMDAC, два Dual DVI, HDMI, DisplayPort, HDTV) в отдельный чип NVIO, что когда-то уже было с картами на базе G80. Из остальных интерфейсов отметим поддержку PCI Express 2.0 и двух разъемов для объединений видеокарт в режиме SLI и 3-way SLI.

Поддерживается технология HybridPower. При использовании материнской платы с данной технологией и встроенной видеокартой, внешняя в простое может быть отключена, а функции вывода изображения ложатся на плечи интегрированного графического ядра.

Никуда не делись возможности по аппаратному ускорению видео высокого разрешения, но и изменений нет. Все тот же PureVideo HD второго поколения, как и в предыдущих продуктах. Поддерживается вывод изображения через HDMI и DisplayPort.

А вот чего действительно не хватает в новом продукте, так это поддержки DirectX 10.1 и ShaderModel 4.1 - остался лишь "старый" DirectX 10.0. Конечно, программные преимущества обновленного API пока еще не используются разработчиками игр, но пора бы уже ввести поддержку соответствующих инструкций, тем более в новый топовый чип.

Подводя общие итоги по архитектуре, стоит отметить, что ничего кардинально со времен G92/G80 не поменялось, а все вычислительные блоки в среднем были увеличены в два раза. Остальные изменения коснулись лишь доработки функциональности этих самых блоков.

В таблицу, представленную ниже, занесены данные всех основных одночиповых решений различных поколений.

Видеокарта GeForce GTX 280 GeForce GTX 260 GeForce 9800 GTX GeForce 8800 GTS GeForce 8800 GTX
Ядро GT200 GT200 G92 G92 G80
Число транзисторов, млн. 1400 1400 754 754 681
Техпроцесс, нм 65 65 65 65 90
Число процессоров 240 192 128 128 128
Число TMU 80 64 64 64 32
Число ROP 32 28 16 16 24
Частота ядра, МГц 602 576 675 650 575
Частота процессоров, МГц 1296 1242 1688 1625 1350
Частота памяти, МГц 2214 2000 2200 1940 1800
Шина памяти, бит 512 448 256 256 384
Тип памяти GDDR3 GDDR3 GDDR3 GDDR3 GDDR3
Объем памяти, МБ 1024 896 512 512 768
Пропускная способность памяти, ГБ/с 142 112 70,4 62 86,4
Интерфейс PCI Express 2.0 PCI Express 2.0 PCI Express 2.0 PCI Express 2.0 PCI Express 1.1
Поддерживаемая версия DirectX 10 10 10 10 10
Энергопотребление, Вт 236 182 168 140 177

XpertVision GeForce GTX 280

Новый видеоадаптер от NVIDIA мы рассмотрим на примере продукта компании XpertVision, хотя на самом деле все карты, выпускаемые на данный момент, являются референсными, производимыми на "одном заводе". Делая свой выбор в пользу того или иного бренда, вы платите лишь за имя и комплектацию.


Видеокарта, которая попала к нам, как раз и отличалась весьма скудной комплектацией, что для такого дорого продукта очень непривычно:
  • Переходник DVI/D-Sub;
  • Переходник DVI/ HDMI;
  • Диск с драйверами;
  • Инструкция по установке.
Модель от XpertVision в качестве отличительных знаков имеет лишь наклейку на вентиляторе. Строгий черный кожух двуслотового кулера с наклонным вентилятором закрывает всю плату размером 270x100 мм. Задняя сторона тоже полностью закрыта металлической пластиной, которая служит и радиатором для чипов памяти и усиливает жесткость конструкции, предотвращая изгиб.



Вся информация о видеокарте нанесена на боковую стенку. Кстати, наклейки со штрих-кодом нанесены на место стыка верхней и нижней части кулера, так что снятие его чревато повреждением их и, соответственно, потерей гарантии.


С внешней боковой стороны расположены два разъема питания (6-pin и 8-pin). Разъемы SLI и S/PDIF (для подключения звука) закрыты резиновыми заглушками.


Сняв систему охлаждения, вряд ли можно будет увидеть что-то новое. Кулер по конструкции полностью повторяет аналоги на картах GeForce 8800GTS/9800GTX: медный сердечник посредством тепловых трубок передает тепло от ядра к тонким алюминиевым ребрам, которые продуваются турбиной. После чего отработанный воздух выходит наружу системного блока.


Да и сам дизайн платы недалеко ушел от дизайна PCB карт на базе G80, только защитной рамки вокруг чипа нет:



Ядро GT200, в связи со своими размерами обзавелось теплораспределительной крышкой, позволяющей также избежать сколов кристалла.


В качестве памяти используются микросхемы Hynix со временем доступа 0,8 мс (H5RS5223CFR-N2C) с номинальной частотой 2200 МГц и общим объемом 1024 МБ.

Мониторинг и разгон

Чип работает на частоте 602 МГц, при этом шейдерные блоки на 1296 МГц. Память GDDR3 функционирует на эффективных 2214 МГц (1107 МГц физических). Но такие частоты включаются лишь при загрузке GPU. В простое эти значения составляют лишь 300/100/200 МГц (ядро/шейдерный домен/память). При увеличении нагрузки ядро может быть установлено на частоту 400 МГц, память 594 МГц. А вот шейдерные блоки, судя по наблюдению, принимают лишь два дискретных значения.


Так же есть инерционность при переключении из высокочастотного режима в низкочастотный. При уменьшении нагрузки изменение частот происходит с запазданием в несколько секунд, вначале принимая средние значения, а потом уже опускаясь до минимальных.

RivaTuner 2.09 работает с новыми видеокартами, но скорость оборотов вентилятора не определяет. Эти данные можно просмотреть в утилите GPU-Z. Хотя управлять оборотами из меню RivaTuner можно, причем здесь положение ползунка соответствует активному на данный момент скоростному режиму в процентах.


Для измерения температуры мы традиционно использовали 10-минутный тест ATITool. Стоит отметить, что если вначале карта не нагрелась выше 81°C, то после двухчасового тестирования в играх, "волосатый куб" ATITool уже легко разогревал ядро до 85°C. При этом обороты поднимались до 92% от номинала. Это практически предел возможностей кулера, что свидетельствует о его низкой эффективности для охлаждения такой горячей карты.


Отдельно стоит отметить шумовые характеристики. GeForce GTX 280 можно смело назвать чемпионом по создаваемому шуму. Гул турбины слышен даже при работе в 2D. В 3D-режиме уровень шума достигает и превышает все мыслимые комфортные пороги. Сидеть за компьютером, в котором работает такая карта, не только неприятно, но и искренне становится жаль того, кто это "чудо" себе купит. В общем если вам не по душе постоянный гул от компьютера как от пылесоса, то готовьтесь в придачу к такой видеокарте купить сразу мощный альтернативный кулер.

Что касается разгона, то он оказался минимальный. Судя по артефактам, все упирается в охлаждение. Также нет возможности гнать отдельно растровый и шейдерный домены. Эта возможность в RivaTuner включается, но пока не работает. Частоты все равно изменяются синхронно, или даже могут сброситься до минимального порога. Видеокарту удалось разогнать до 633/1350/2520 МГц. По ядру это лишь на 5% выше номинала (что и разгоном то не назовешь), по памяти - 13% выше номинала. Учитывая изначально высокую ПСП этой видеокарты, можно предположить, что разгон памяти роли на итоговой производительности не играет.


Для разгона обороты вентилятора были подняты до 100% что позволило добиться даже более низкой температуры чем та, до которой карта прогревалась при 92% оборотах.ZOTAC GeForce 9800GX2

Главным соперником новой видеокарты GeForce GTX 280 выступает мультичиповый GeForce 9800 GX2, основанный на двух ядрах G92-450. Эта видеокарта до выхода представителя нового поколения занимала место самого производительного продукта. Посмотрим, сможет ли ее победить новое одночиповое решение. Самое интересное, что суммарное количество вычислительных блоков GeForce 9800 GX2 одинаково с одночиповым GeForce GTX 280.

В отличие от компании AMD, которая видит будущее в таки мультиядерных решениях, NVIDIA продолжает концентрировать силы на разработке одночиповых карт. Выпуск GeForce 9800 GX2 был вынужденным ответом на Radeon HD3870 X2, так как новое поколение находилось в стадии разработки, а лавры лидера никто и никому не собирался отдавать. Учитывая, что одноядерная GeForce 8800GTS 512MB запросто превосходит Radeon HD 3870 по производительности, не мудрствуя лукаво, NVIDIA взяла да и объединила две платы в SLI в пределах одного корпуса. Изначально жизненный путь GeForce 9800 GX2 должен был быть очень коротким, но как мы увидим ниже, не стоит возлагать большие надежды на новое поколение и "старичок" еще очень даже успешно конкурирует с новым High-End-видеоадаптером.

В качестве представителя GeForce 9800 GX2 к нам на тестирование попала видеокарта от компании ZOTAC.


Но опять же, все High-End-акселераторы на базе чипов NVIDIA повторяют референс и отличаются лишь комплектацией.

Комплектация:

  • Два переходника DVI/D-Sub;
  • Переходник питания с "молекса" на 6-pin;
  • Переходник питания с "молекса" на 8-pin;
  • Кабель HDMI;
  • Аудиокабель для подключения звука;
  • Диск с драйверами;
  • Полная версия игры LOST: Via Domus ;
  • Инструкция по установке.
Внешний вид видеокарты не сильно отличается от GTX 280. Все такой же массивный «кирпич» закованный в металлический корпус. Вот только теперь не видно турбины.



Устройство этой карты вы можете оценить по нижеприведенному слайду из документации NVIDIA.


Карты расположены по бокам конструкции и повернуты чипами и памятью вовнутрь, а между ними расположена система охлаждения, турбина которой, захватывая воздух через отверстия в платах, прогоняет его между ребрами радиатора и выбрасывает часть за пределы корпуса, а часть воздуха, причем большую, - обратно в системный блок (как в GeForce 9600 GT).


Для циркуляции воздушного потока в кожухе есть вентиляционные отверстия.



Одна из плат является главной - без установки драйвера работает только она одна. Поэтому при подключении монитора его нужно воткнуть в нижний разъем DVI под номером 1.


Кроме разъемов DVI имеется также HDMI, так что, переходники при подключении цифрового приемника видеосигнала не понадобятся. Внешние разъемы и коннекторы питания подсвечиваются. Энергопотребление платы ниже GeForce GTX 280 и составляет 197 Вт в пике. NVIDIA каждую плату в составе GeForce 9800 GX2 наделила своей памятью объемом 512 МБ, которая в SLI, как мы помним не суммируется.

Мониторинг и разгон

В соответствии со спецификацией данная видеокарта работает на частотах - 602/1512 МГц (ядро), 1998 МГц (физические 999 МГц) память. У данного видеоадаптера скорость оборотов турбины-кулера не определяется ни одной утилитой. Но в разделе управления кулером в RivaTuner скорость отображается в процентном соотношении и имеется возможность регулировать обороты турбины. Стартует вентилятор с немного более высоких оборотов чем у GeForce GTX 280, но зато и температура чипов немного меньше. В тесте ATITool температура ядер держалась на уровне 83-84°C.


Температурные датчики есть не только в каждом чипе, но и на каждой плате.

По шумовым характеристикам система охлаждения соответствует таковой у GeForce GTX 280. То есть, так же сильно гудит, но зато со своей задачей справляется немного лучше.

Разгон у этой карты оказался не выдающийся, особенно, учитывая результаты разгона GeForce 8800GTS в нашем прошлом обзоре . Рассматриваемая же модель стабильно работала на частотах 702/1728/2130 МГц (ядро/стрим-процессоры/память). Более высокие значения приводили к зависанию системы в некоторых тестах. Обороты были подняты до максимума, но это не помогло улучшить разгон. Установленный на обдув 120-мм вентилятор тоже не изменил ситуацию, хотя еще на пару градусов температура снизилась. Зависания обычно являются признаком нехватки мощности, но используемого на тестовом стенде блока питания на 1 кВт должно было хватать с лихвой.

Сравнительная таблица характеристик видеокарт
Видеокарта XpertVision GeForce GTX 280 1GB ZOTAC GeForce 9800GX2 512MB
Кодовое имя процессора GT200 2 x G92-450
Техпроцесс, нм 65 65
Частота ядра, МГц 602 602
Частота унифицированных шейдерных блоков, МГц 1296 1512
Количество унифицированных шейдерных блоков 240 2 x 128
Количество текстурных блоков TMU 80 2 x 64
Блоков блендинга ROP 32 2 x 16
Частота памяти, МГц 2214 1998
Разрядность интерфейса памяти, бит 512 2 x 256

Тестовый стенд:

  • Процессор: Core 2 Duo E8400 3 ГГц (разогнанный до 4 ГГц, 445 МГц FSB);
  • Кулер: Thermalright Ultra-120 eXtreme;
  • Материнская плата: Gigabyte P35-S3;
  • Память: 2х2GB OCZ PC6400 (890 МГц при таймингах 5-5-5-15);
  • Жесткий диск: 320GB Hitachi T7K250;
  • Блок питания: Chieftec CFT-1000G-DF;
  • Операционная система: Windows XP SP2, Windows Vista Ultimate SP1;
  • Драйвера: ForceWare 177.41 для GTX 280, ForceWare 175.19 для 9800GX2;
Использовались 32-разрядные операционные системы, поэтому, несмотря на общий объем памяти в 4 ГБ, задействовано лишь 3,5 ГБ. Тесты проводились в разрешении 1280х1024 и 1600х1200. Тестирование с включением сглаживания использовалось лишь в тех играх, где оно поддерживается непосредственно самим приложением. Для видеокарт использовались последние официальные драйвера, доступные на сайте NVIDIA.

Для сравнения с предыдущим поколением, в графики были добавлены результаты ASUS GeForce 8800 GTS 512MB из прошлого тестирования. Для этой карты использовались чуть более старые драйвера версии ForceWare 175.16.

Результаты тестирования в DirectX 9


В этом синтетическом тесте лидирует GeForce 9800 GX2. Она на 33% процента быстрее GeForce 8800 GTS и на 8% быстрее GeForce GTX 280 на номинальных частотах.

S.T.A.L.K.E.R. (DX9)

Традиционно первым игровым тестом выступает этот популярный отечественный шутер .


Все настройки графики на максимум, анизотропная фильтрация включена. Тест проводился на первой локации "Кордон".


Ситуация в этой игре повторяет расстановку сил в предыдущем тесте. Опять на первом месте двухчиповая видеокарта. Новичок уступает ей 10-14%, но обгоняет видеокарту 8-й серии на 30-40%, которая, благодаря неплохому потенциалу, в разгоне сокращает этот разрыв.

TimeShift (DX9)


Настройки графики максимальные, включена фильтрация AF16x. Небольшой игровой эпизод переигрывался по три раза для более точного результата.


В низком разрешении наблюдается паритет между двумя главными соперниками, но лучший разгон позволяет двухчиповой модели опередить новичка. А вот в более тяжелом режиме изначально лидирует GeForce 9800 GX2.

Unreal Tournament 3 (DX9)

Популярный сетевой шутер. На движке этой игры создано множество других популярных проектов, так что производительность в этом приложении очень показательна.


Настройки графики максимальные. Тест проводился на уровне ShangriLa без ботов. Для каждого режима тест проводился по три раза.


И снова паритет между соперниками в низком разрешении, и безоговорочное лидерство GeForce 9800GX2 в высоком. Примечательно, что игра неплохо реагирует на мультичиповые решения, карта с двумя G92 на 75% быстрее одного G92.

Call of Duty 4 (DX9)

Одна из лучших игр прошлого года.


Тестирование проводилось на уровне WarPig. Данный игровой эпизод отличается множеством ботов, взрывов, дыма в кадре. Результаты построены по итогам пятикратного прогона данного игрового эпизода, чтобы уменьшить погрешность.


В общем-то, все видно на графиках, снова GeForce GTX 280 занимает почетное второе место. Учитывая цену на эту карту, хотелось бы наконец-то увидеть, чтобы она хоть где-то обогнала представителя прошлой серии.

Legend: Hand of God (DX9)

Diablo-клон с красивой графикой.


Все настройки графики максимальные. Графический движок игры не отличается оптимизацией, тем более интересно, какие результаты будут на столь мощных видеокартах.


Говорить об однозначной победе GeForce GTX 280 в этой игре нельзя. Производительность всех видеокарт без активации сглаживания примерно на одном уровне. Кстати, эта игра явно безразлична к SLI. GeForce 8800GTS умудряется даже слегка обогнать GeForce 9800GX2. А вот активация фильтрации и сглаживания сразу выводит на первое место новичка. Видно, что у GT200 все же есть порох в пороховницах.

Race Driver: GRID (DX9)

Отличный автосимулятор с красивой графикой на движке Colin McRae Rally DIRT.


Настройки графики максимальные. Результатов GeForce 8800GTS с MSAA 4х нет, поскольку эта карта в прошлый раз тестировалась в другом режиме сглаживания.


Для тестов использовался стандартный GPU-бенчмарк.


Уверенная победа нового флагмана, в низком разрешении он обгоняет соперника на 20%, в высоком на 12%. Правда, разгон второго позволяет ему немного сократить разрыв, но даже в разгоне он не может достигнуть показателей старшей модели.
Результаты тестирования в DirectX 10

Devil May Cry4 (DX10)

Первый тест под DirectX 10. Игра хоть и новая, но отличается невысокими системными требованиями.


Тестирование проходило следующим образом: совершалась прогулка по определенному маршруту, включая прогулку по крышам, переулкам и небольшой площади, насыщенной NCP. По троекратным испытаниям получены средние результаты. В высоком разрешении 1600х1200 (реальное игровое разрешение 1600х900) игра просто не позволяет включить сглаживание, поэтому этих результатов для данного разрешения на диаграмме нет.


Не триумф, но уверенная победа GeForce GTX 280 во всех тестируемых режимах. Даже более удачный разгон не позволяет сопернику обогнать модель на GT200.

Еще одна игра, где уверенно лидирует GeForce GTX 280, причем наибольший отрыв данной видеокарты в тяжелых режимах со сглаживанием. Судя по двум последним играм в DirectX 10 новичок проявляет себя лучше, чем в играх под DirectX 9.

Crysis (DX10)

Тесты под DirectX 10 проводились в пропатченной версии 1.2. Проверим, подтверждается ли наше предположение, что основной потенциал GeForce GTX 280 раскрывается в DirectX 10.


После довольно радостных для GeForce GTX 280 результатов в этой игре под старым API, мы видим, что сейчас уже она не может соперничать с GeForce 9800GX2. Конечно есть двукратное превосходство новичка в высоком разрешении со сглаживанием, но этим показателям далеко до играбельного FPS. Как видим, новые флагманы 3D-ускорителей наконец-то могут обеспечить комфортную производительность в Crysis под DirectX 10, но только лишь в разрешении 1280х1024.

Выводы

Если вы ждали сенсации и прорыва от новых видеоадаптеров NVIDIA, то можете ждать дальше. Прорыва подобного выходу G80, не случилось. Новый чип представляет собой в два раза увеличенный по мощности старый добрый чип G92 с небольшими улучшениями вычислительных блоков. На деле это выливается в то, что предыдущий флагман компании на двух G92 в большинстве игр обгоняет новичка. И это при том, что на GeForce 9800GX2 еще и цена меньше.

Конечно потенциал у новой видеокарты есть, шина 512 бит и большой объем памяти помогают ей иногда поддерживать лидерство в тяжелых режимах. Но проблема именно в этом "иногда". Добавьте к этому более высокое энергопотребление новой видеокарты и ее горячий нрав. Вывод напрашивается сам собой. Если есть более дешевая, часто более быстрая и немного более прохладная (все же температура ее чипов меньше) GeForce 9800 GX2, то зачем нам что-то другое и более дорогое?

Но есть и довольно веский аргумент в пользу новой модели. Многочиповые решения имеют определенные проблемы с программной оптимизацией. В нашем тестировании была лишь одна игра, где явно видно, что потенциал двух G92 не используется. В Legend: Hand of God GeForce 9800GX2 даже уступила пару процентов одночиповому предшественнику с более высокими чатсотами. В остальных же играх двухчиповый GeForce всегда обгонял GeForce 8800GTS, и иногда довольно существенно. Так что не так страшен SLI, как его рисуют. По крайней мере, так обстоят дела на 32-разрядных операционных системах. На x64, по отзывам, дела с оптимизацией обстоят похуже. Последние борцы за одночиповые решения могут вспомнить и характерные "лаги" у двухчиповых карт. Да, такое имеет место быть. Но из всех протестированных игр это явно было заметно лишь в Crysis. В остальных играх игровой процесс если не идеален, то кратковременные просадки производительности не заметны. Видеокарта мощная, и если даже будет просадка от 100 до 50 FPS, то 90% игроков этого просто не почувствуют.

На фоне таких приятных умозаключений напрашивается еще один вопрос. А зачем нам тогда и GeForce 9800GX2 нужен? Если за ее цену можно спокойно взять две GeForce 8800 GTS и поставить их в SLI. При этом карты будут лучше охлаждаться, что позволит даже больше их разогнать. Ведь GeForce 9800 GX2 практически ничем не отличается от того же SLI, который можно получить на материнской плате.

Если же сравнивать цены на рассмотренные сегодня продукты с их уровнем производительности, то становится ясно, что 50-100% прироста производительности над одной 8800GTS выливаются в 2-3 кратное увеличение цены. При этом вы получаете печку с невыносимым уровнем шума. Платить 500-700 у.е. за топовый акселератор, чтобы играть затыкая уши? Бред. Так что, сразу же приготовьтесь менять стандартную систему охлаждения, и желательно на СВО.

Положа руку на сердце, стоит сказать, что продукты подобные GeForce 9800 GX2 и GeForce GTX 280 в соотношении "цена/производительность" не самые привлекательные варианты. Но High-End всегда таким был. Мы переплачиваем за возможность купить уже сейчас, то, что через год будет стоить в два раза дешевле. Но все же хотелось бы за такие деньги получить готовый к "употреблению" продукт, а не конструктор для энтузиастов. Если вы не считаетесь с финансами и всегда мечтали собрать себе SLI из двух или трех мощнейших видеокарт, при этом в придачу организовать СВО, то рассмотренные модели как раз то, что надо. Мощнее и горячее их пока нет. :)

В одном из ближайших материалов мы постараемся познакомить вас с новыми мощными видеоадаптерами от AMD и NVIDIA меньшей ценовой категории. Сравним их с данными топовыми моделями и выясним, какая модель все же самая эффективная в соотношении "цена/производительность".

Благодарим следующие компании за предоставленное тестовое оборудование:

  • DC-Link , в частности Александра aka Punisher, за видеокарту GeForce GTX 280 и блок питания Chieftec CFT-1000G-DF;
  • PCshop Group за видеокарту GeForce 9800GX2;
  • Магазин STORM за процессор Core 2 Duo E8400 и память OCZ PC6400.

Предыдущее изображение Следующее изображение

Видеокарта с довольно высокой производительностью на базе графического ядра NVIDIA восьмого поколения, поддерживающая большинство современных технологий. Подойдёт для домашних компьютеров и игровых станций.

Графический процессор обеспечивает высокую производительность для большинства современных компьютерных игр, а поддержка PhysX позволяет получить дополнительные спецэффекты в играх без заметных потерь в производительности.

Хорошая поддержка универсальных вычислений CUDA / OpenCL / DirectX позволяет значительно повысить продуктивность в задачах кодирования видео и видеомонтажа.

Достоинства

Хорошая производительность для игр Видеокарта позволяет играть во все современные компьютерные игры с хорошим качеством изображения. Поддержка SLI Возможность объединения в группу с одной или двумя такими же картами (при использовании SLI -совместимой материнской платы) для дополнительного повышения быстродействия игр. Готовность к 3D Vision Stereo Карта обладает достаточным «запасом прочности» для полноценного стереоорежима в играх при использовании комплекта NVIDIA 3D Vision (требуется совместимый монитор). Поддержка ускорения PhysX Графический процессор обладает достаточной мощностью для одновременного расчёта трёхмерной графики и дополнительных спецэффектов в поддерживающих PhysX играх.

Недостатки

Неполное ускорение для видео в формате VC-1 Воспроизведение некоторых дисков Blu-ray и видео из Интернет будет зависеть от мощности центрального процессора компьютера. Разъем HDMI опционален В большинстве видеокарт данной модели для цифрового подключения телевизора/видеотехники требуется использовать отдельный переходник и соединять видеокарту со звуковым адаптером проводом. Шум и электропотребление Видеокарта требует наличия мощного и качественного блока питания компьютера. Шум охлаждающей системы под нагрузкой может превышать комфортный. Отсутствие поддержки DirectX 11 Новейшие спецэффекты в компьютерных играх будут недоступны, производительность в Windows 7 ограничена.
Чипсет GeForce GTX 280

Архитектура GPU

Кодовое название микроархитектуры графического процессора

Предыдущее изображение Следующее изображение

Видеокарта с довольно высокой производительностью на базе графического ядра NVIDIA восьмого поколения, поддерживающая большинство современных технологий. Подойдёт для домашних компьютеров и игровых станций.

Графический процессор обеспечивает высокую производительность для большинства современных компьютерных игр, а поддержка PhysX позволяет получить дополнительные спецэффекты в играх без заметных потерь в производительности.

Хорошая поддержка универсальных вычислений CUDA / OpenCL / DirectX позволяет значительно повысить продуктивность в задачах кодирования видео и видеомонтажа.

Достоинства

Хорошая производительность для игр Видеокарта позволяет играть во все современные компьютерные игры с хорошим качеством изображения. Поддержка SLI Возможность объединения в группу с одной или двумя такими же картами (при использовании SLI -совместимой материнской платы) для дополнительного повышения быстродействия игр. Готовность к 3D Vision Stereo Карта обладает достаточным «запасом прочности» для полноценного стереоорежима в играх при использовании комплекта NVIDIA 3D Vision (требуется совместимый монитор). Поддержка ускорения PhysX Графический процессор обладает достаточной мощностью для одновременного расчёта трёхмерной графики и дополнительных спецэффектов в поддерживающих PhysX играх.

Недостатки

Неполное ускорение для видео в формате VC-1 Воспроизведение некоторых дисков Blu-ray и видео из Интернет будет зависеть от мощности центрального процессора компьютера. Разъем HDMI опционален В большинстве видеокарт данной модели для цифрового подключения телевизора/видеотехники требуется использовать отдельный переходник и соединять видеокарту со звуковым адаптером проводом. Шум и электропотребление Видеокарта требует наличия мощного и качественного блока питания компьютера. Шум охлаждающей системы под нагрузкой может превышать комфортный. Отсутствие поддержки DirectX 11 Новейшие спецэффекты в компьютерных играх будут недоступны, производительность в Windows 7 ограничена.
Чипсет GeForce GTX 280

Архитектура GPU

Кодовое название микроархитектуры графического процессора