В каком устройстве можно долговременно хранить информацию. Подробная характеристика устройств долговременного хранения информации. Используем оптические диски

У каждого пользователя есть информация, которую хотелось бы сохранить на длительное время. Фото, видео, аудио или важные документы. Однако, просто записать их на жесткий диск и не трогать недостаточно. Постепенно накопитель изнашивается, к тому же не стоит забывать про сбои или повреждения. В данной статье будет описано то, как правильно хранить информацию для лучшей сохранности.

Общие принципы безопасного хранения информации

  • Необходимо делать несколько копий . Действительно важные файлы лучше записать на несколько устройств или накопителей, что позволит с большей вероятностью сохраниться хоть одному носителю в случае непредвиденных обстоятельств.
  • Данные лучше хранить в широко распространенных и известных форматах . Если это текстовый документ, то лучше сохранить его в формате txt, чем в каком-то экзотическом. Вероятность того, что через десяток лет будут программы способные открыть самый распространенный формат гораздо выше, чем если это будет файл, который способна запускать лишь пара утилит.
  • Чем целее данные, тем лучше. Не стоит зашифровать , архивировать или сжимать данные. В случае небольшого повреждения обычного файла есть хорошие шансы на его запуск, а в случае повреждения архивированного или шифрованного шансы небольшие.
  • Также не стоит забывать проверять свои данные время от времени, если носителю много лет или есть сомнения в его целостности, то лучше будет пересохранить информацию на новый накопитель, также хорошей идеей будет использование новых устройств и типов записи.

Использование традиционных накопителей

В этом разделе будут описаны стандартные варианты хранения информации, а также преимущества и недостатки каждого из них.

  1. CD, DVD, Blu-Ray теоретически, эти накопители способны хранится очень долго, также, как и информация на них. Однако, здесь существует множество нюансов, поэтому этот способ будет рассмотрен более подробно ниже.
  2. Облачные хранилища . В них данные могут хранится неограниченно долго. Это в идеальном мире. Фактически, они будут там пока это выгодно компаниям и приносит им выгоду. К тому же, судя по лицензионным соглашениям, никакой ответственности за сохранение информации они не несут. К тому же, пользователь может просто забыть пароль или его могут взломать. Так что нет никакой гарантии, что здесь эта информации будет сохранена надежнее, чем на обычном жестком диске.

Используем оптические диски

Этот способ является самым надежным в плане долговечности, некоторые производители называют сроки чуть ли не в сотню лет. Однако многие сталкивались с такой ситуацией, что болванка может не читаться не то, что через пару лет, а даже через несколько месяцев. Этому есть несколько причин.

На что обратить внимание при выборе диска

В дисках очень важны материалы из которых изготовлен отражающий и записываемый слои, а также остальные части диска.

Записываемый слой в идеале должен состоять из фталоцианина , а отражающий слой из золота или серебра. Хотя производители могут подобрать и другое сочетание веществ. К тому же пользователи такие тонкости не нужны. Все, что нужно знать — это то, что диски для длительного хранения данных имеют в своем названии отсылку к архивам или прямо называются архивными, например, DVD-R Mitsui MAM-A Gold Archival или Verbatim UltraLife Gold Archival . Стоят они гораздо дороже и найти их в магазинах вряд ли получится, придется заказывать в других странах. К тому же, стоят они гораздо дороже обычных дисков, зато и хранят информацию дольше, до 100 лет.

Из доступных вариантов можно приобрести Verbatim или Sony , произведенные в Тайване.

Далее представлена диаграмма, которая отображают количество ошибок считывания информации с диска в зависимости от времени, проведенного им в агрессивной среде.

Millenniata M-Disk

Как видно из графика, эта фирма выпускает одни из надежнейших дисков. Фактически, большая часть отличий состоит в материале и способе записи. На этих носителях используется не органический, а стеклоуглеродный слой для записи информации.

При этом, вместо смены цвета, как делается при записи обычных оптических накопителей, здесь в прямом смысле происходит прожиг материала.

Это позволяет данным хранится гораздо дольше, и они меньше зависят от внешних факторов. Можно найти множество роликов в интернете, в которых над этими дисками издеваются как могут, а они продолжают работать. Так что, если информация действительно будет хранится долгое время, стоит задумать о приобретении дисков этого производителя.

ВНЕШНЯЯ ПАМЯТЬ Используется для долговременного хранения информации Твёрдотельные носители информации Накопители на жестких магнитных дисках (НЖМД, HDD) АППАРАТНАЯ РЕАЛИЗАЦИЯ Накопители на магнитной ленте – «Стримеры» Накопители на лазерных дисках (CD, Compact Disk и др.) Носитель информации – среда для записи/считывания и хранения информации.

Вариант классификации носителей информации, используемых в компьютерной технике Носители информации для ЭВМ Ленточные носители магнитные Дисковые носители оптические Флэш-носители магнитооптические

Основным видом внешней памяти является магнитная память Магнитная запись В конце 1898 года датчанин Вальдемар Поулсен (Valdemar Poulsen) предложил устройство для магнитной записи звука на стальную проволоку. Спустя 30 лет немецкий инженер Фриц Плеймер (Fritz Pfleumer) представил звукозаписывающее устройство с носителем в виде бумажной ленты, на которую наносилось тонкое стальное покрытие. В 1932 году немецкая компания AEG продемонстрировала первый звукозаписывающий аппарат, который получил название «Magnetophon» . Магнитная лента обладает основным недостатком – способностью размагничиваться при длительном хранении и имеет неравномерную частотную характеристику (различная чувствительность к записи на разных частотах). Кроме того, любая магнитная лента обладает собственными шумами (физические свойства магнитного слоя и способы записи-воспроизведения звука).

Принцип магнитной записи заключается в воздействии электромагнитного поля на ферромагнитный материал магнитной ленты, осуществляемом при записи, а также перезаписи аналогового сигнала. Магнитное поле в процессе записи изменяется в соответствии с изменениями электрических сигналов. Электрические колебания от источника звука подаются на записывающую головку и возбуждают в ней магнитное поле звуковой частоты (20 Гц – 20 к. Гц). Под действием этого поля происходит намагничивание отдельных участков магнитной ленты, равномерно перемещаемой вдоль головок записи, стирания и воспроизведения (Рис.).

Для записи-воспроизведения, а также использования различных данных на машиночитаемые носители данных используется преобразование аналогового (звукового и видео) сигнала в цифровую форму. Такая технология получила название оцифровки информации. Принцип оцифровки (кодирования) звука заключается в преобразовании непрерывного разного по величине амплитудночастотного звукового и видео сигналов в закодированную последовательность чисел, представляющих дискретные значения амплитуд этого сигнала, взятые через определенный промежуток времени. Для этого необходимо измерять амплитуду сигнала через определённые промежутки времени и на каждом временнóм отрезке определять среднюю амплитуду сигнала. Согласно теореме Шенона (Котельникова), этот промежуток времени (частота) должен быть не меньше удвоенной максимальной частоты передаваемого звукового сигнала (Рис.).

Эта частота называется частотой дискретизации. Дискретизация – процесс взятия отсчётов непрерывного во времени сигнала в равноотстоящих друг от друга по времени точках, составляющих интервал дискретизации. В процессе дискретизации измеряется и запоминается уровень аналогового сигнала. Амплитуда Частота (Гц) Рис. 13. Преобразование аналогового сигнала в цифровой. Чем реже (меньше) промежутки времени, тем качество закодированного сигнала выше.

Стримеры Ленточные носители используются для резервного копирования с целью обеспечения сохранности данных. В качестве таких устройств применяется стример (Рис.), а – носителя информации в них используются магнитные ленты в кассетах и ленточных картриджах. Обычно на магнитную ленту запись осуществляется побайтно, при этом домен соответствует двоичной единице. Если считывающее устройство его не обнаруживает, то полученное значение соответствует нулю.

Система записи на магнитные диски и дискеты несколько похожа на систему записи на пластинки. В отличие от последних запись осуществляется не по спирали, а на концентрические окружности – дорожки («траки» - traks), расположенные на двух сторонах диска и образующие как бы цилиндры. Окружности, в свою очередь, делятся на сектора (Рис.). Каждый сектор дискеты, не зависимо от размеров дорожки, имеет одинаковый размер, равный 512 байт, что достигается различной плотностью записи: меньшей на периферии и большей ближе к центру дискеты.

Магнитооптический носитель информации внешние высоконадёжные устройства переноса и хранения информации. Магнитооптические диски (МО) появились в 1988 году. МО диск заключён в пластиковый конверт (картридж) и является устройством произвольного доступа. Он совмещает в себе магнитный и оптический принципы хранения информации и представляет поликарбонатную подложку (слой) толщиной 1, 2 мм, на которую нанесено несколько тонкоплёночных магнитных слоёв (Рис.). Запись лазером с температурой примерно в 200 о. С на магнитный слой происходит одновременно с изменением магнитного поля. Рис. Состав МО диска.

Запись данных осуществляется лазером в магнитном слое. Под воздействием температуры в месте нагрева в магнитном слое уменьшается сопротивляемость изменению полярности, и магнитное поле изменяет полярность в нагретой точке на соответствующую двоичной единице. По окончании нагрева сопротивляемость увеличивается, но установленная полярность сохраняется. Стирание создаёт в магнитном поле одинаковую полярность, соответствующую двоичным нулям. При этом лазерный луч последовательно нагревает стираемый участок. Считывание записанных данных в слое производится лазером с меньшей интенсивностью, не приводящей к нагреву считываемого участка. При этом, в отличие от компакт-дисков, поверхность диска не деформируется.

Компактный оптический диск (CD) – это пластмассовый диск со специальным покрытием, на котором в цифровой форме размещается записанная информация. Благодаря изменению скорости его вращения, дорожка относительно считывающего луча лазера движется с постоянной линейной скоростью. У центра диска скорость выше, а у края – медленнее (1, 2– 1, 4 м/сек). В CD используют лазер с длиной волны излучения = 0, 78 мкм. «Прожигаемая» лазером цифровая информация сохраняется в виде «пит» – чёрточек шириной 0, 6– 0, 8 мкм и длиной 0, 9– 3, 3 мкм. Существует три основных вида CD: ● CD-ROM, на которые запись, как правило, осуществляется фабрично методом штамповки с матрицы; ● CD-R, используемые для одно или несколькократной лазерной записи сессиями; ● CD-RW, предназначенные для многократных циклов записистирания.

В CD-R (Compact Disk Recordable) поверх отражающего слоя из золота, серебра или алюминия, расположен органический слой специального легкоплавкого пластика. Ввиду этого такой диск чувствителен к нагреванию и воздействию прямых солнечных лучей. В CD-RW в качестве промежуточного слоя также используется органический состав, но он способен при сильном нагреве переходить из кристаллического (прозрачного для лазера) состояния в аморфное. Слабый нагрев возвращает его обратно в кристаллическое состояние. Таким образом осуществляется перезапись.

DVD В начале 1997 года появился стандарт компакт-дисков под названием DVD (Digital Video Disc), предназначенный в основном для записи высококачественных видеопрограмм. В дальнейшем аббревиатура DVD получила следующее значение – Digital Versatile Disc (универсальный цифровой диск), как более полно отвечающая возможностям этих дисков для записи звуковой, видео, текстовой информации, программного обеспечения ПК и др. DVD обеспечивает более высокое качество изображения, чем CD. В них используется лазер с более короткой длиной волны излучения = 0, 635– 0, 66 мкм. Это позволяет повысить плотность записи, т. е. уменьшить геометрические размеры пит до 0, 15 мкм и шаг дорожки до 0, 74 мкм.

Плотность записи оптических дисков определяется длиной волны лазера, то есть возможностью сфокусировать на поверхности диска луч с пятном, диаметр которого равен длине волны. Вслед за DVD в конце 2001 года появились устройства Blu-Ray, позволяющие работать в синей области спектра с длиной волны = 450– 400 нм.

Для увеличения ёмкости используют и флуоресцентные диски - FMD (Fluorescent Multilayer Disk). Принцип их действия заключающийся в изменении физических свойств (появление флуоресцентного свечения) некоторых химических веществ под воздействием лазерного луча (Рис.). Здесь вместо технологий CD и DVD, использующих отражённый сигнал, под воздействием лазера свет излучается непосредственноинформационнымслоем. Такие диски изготавливаются из прозрачного фотохрома. Под воздействием лазерного излучения в них происходит химическая реакция, и отдельные участки информационного слоя («питы») заполняются флуоресцентным материалом. Этот метод может считаться методом объёмной записи данных. В бόльшей степени такая запись возможна при использовании трёхмерной голографии, позволяющее ныне в кристалле размером с сахарный кубик, разместить до 1 Тб данных.

Используется два основных типа Flash-памяти: NAND и NOR (логическая функция ИЛИ-НЕ) и NAND (логическая функция И-НЕ). Структура NOR состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает произвольный доступ к данным и побайтную запись информации. В основе структуры NAND лежит принцип последовательного соединения элементарных ячеек, образующих группы (по 16 ячеек в одной группе), которые объединяются в страницы, а страницы в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение происходит к блокам или к группам блоков.

Микросхемы NOR хорошо работают совместно оперативной памятью RAM, поэтому чаще используются для BIOS. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее, чем в памяти NOR. Поскольку 16 прилегающих друг к другу ячеек памяти NAND соединены последовательно, без контактных промежутков, достигается высокая плотность размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. С середины 1990 -х гг. появились микросхемы NAND в виде твердотельных дисков (Solid State Disk, SSD). Для сравнения времени доступа у SDRAM оно составляет 10– 50 мкс, у флэш-памяти – 50– 100 мкс, а у жестких дисков – 5000 – 10000 мкс.

Твердотельный жесткий диск Samsung. Скорость чтения с такого диска составляет 57 Мбайт/с, а скорость записи на него – 32 Мбайт/с. Энергопотребление SSD составляет менее 5% от показателей традиционных жестких дисков, увеличивая более чем на 10% время автономной работы портативных ПК. SSD обеспечивают сверхвысокую надежность хранения данных и отлично зарекомендовали себя в условиях экстремальных температур и влажности. Петербургская фирма “Просто. Софт” предложила драйвер Flash. RAID для объединения двух флэш-накопителей в RAID-массив.

Flash-память – переносной энергонезависимый накопитель. Обычно используются следующие стандарты флэш-памяти: Compact. Flash, Smart. Media, Memory Stick, Floppy Disks, Multi. Media Cards и др. Они могут использоваться вместо дискет, лазерных и магнитооптических компактных, небольших жёстких дисков. Современные сменные устройства флэш-памяти обеспечивают высокую скорость обмена данными (Ultra High Speed) – более 16, 5 Мбит/с. Для подключения к USB-порту компьютера используются специальные USB Flash Drive (Рис.), представляющие собой мобильные малогабаритные устройства хранения данных, не имеющие подвижных и вращающихся механических частей.

Голография – фотографический метод записи, воспроизведения и преобразования волновых полей. Впервые был предложен в 1947 году венгерским физиком Деннисом Габором. В 1960 -е годы, с появлением лазера представилась возможность точно записывать и воспроизводить объёмные изображения в кристалле ниобата лития. С 1980 -х годов, с появлением компакт-дисков, голографические устройства хранения информации на основе лазерной оптики стали одной из технологий внешней памяти. Голографическая память представляет весь объём запоминающей среды носителя, при этом элементы данных накапливаются и считываются параллельно.

Современные голографические устройства хранения получили название HDSS (holographic data storage system). Они содержат: лазер, расщепитель луча для разделения лазерного пучка, зеркала для направления лазерных лучей, жидкокристаллическую панель, используемую как пространственный модулятор света, линзы для фокусировки лазерных лучей, кристалл ниобата лития или фотополимер как запоминающее устройство, фотодетектор для считывания информации (Рис.).

ВВЕДЕНИЕ

Устройства хранения информации (внешняя память) - компоненты компьютера, позволяющие практически неограниченное время сохранять большие объемы информации без потребления электроэнергии (энергонезависимые).

Первыми такими устройствами для ПК были Floppy-дисководы (FDD) и сменные дискеты - вначале пятидюймовые (5,25”) емкостью 360 Кб и 1,2 Мб, затем трехдюймовые (3,5”) емкостью 1, 44 Мб. В настоящее время применяются редко в связи с широким распространением устройств флэш-памяти емкостью в несколько гигабайт.

Характерной особенностью внешней памяти является то, что ее устройства оперируют блоками информации, но никак не байтами или словами, как это позволяет оперативная память. Эти блоки обычно имеют фиксированный размер, кратный степени числа 2. Блок может быть переписан из внутренней памяти во внешнюю или обратно только целиком, и для выполнения любой операции обмена с внешней памятью требуется специальная процедура (подпрограмма). Процедуры обмена с устройствами внешней памяти привязаны к типу устройства, его контроллеру и способу подключения устройства к системе (интерфейсу).

Внешняя память используется для долговременного хранения больших объемов информации. В современных компьютерных системах в качестве устройств внешней памяти наиболее часто применяются:

* накопители на жестких магнитных дисках (НЖМД)

* накопители на гибких магнитных дисках (НГМД)

* накопители на оптических дисках

* магнитооптические носители информации.

ОСНОВНЫЕ ПОНЯТИЯ

Внешняя память - это память, реализованная в виде внешних, относительно материнской платы, устройств с разными принципами хранения информации и типами носителя, предназначенных для долговременного хранения информации. В частности, во внешней памяти хранится все программное обеспечение компьютера. Устройства внешней памяти могут размещаться как в системном блоке компьютера, так и в отдельных корпусах. Физически, внешняя память реализована в виде накопителей.

Накопители - это запоминающие устройства, предназначенные для продолжительного (что не зависит от электропитания) хранения больших объемов информации. Емкость накопителей в сотни раз превышает емкость оперативной памяти или вообще неограниченная, когда речь идет о накопителях со сменными носителями.

Носитель - это физическая среда хранения информации, по внешнему виду может быть дисковым или ленточным. По принципу запоминания различают магнитные, оптические и магнитооптические носители. Ленточные носители могут быть лишь магнитными, в дисковых носителях используют магнитные, магнитооптические и оптические методы записи-считывания информации.

КЛАССИФИКАЦИЯ УСТРОЙСТВ ДОЛГОВРЕМЕННОГО ХРАНЕНИЯ ИНФОРМАЦИИ

В качестве накопителей информации используются внешние ЗУ, которые реализуются в виде соответствующих технических средств для хранения информации. Все накопители, применяемые в ПК, по конструктивному исполнению унифицированы. Их типоразмеры стандартизированы: наиболее жестко задается ширина и высота устройств, глубина ограничена только максимально допустимым значением. Такая стандартизация необходима для унификации конструктивных отсеков корпусов ПК.

Внешняя память может быть с произвольным доступом и последовательным доступом. Устройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа. Устройства памяти споследовательным доступом позволяют осуществлять доступ к данным последовательно, т.е. для того, чтобы считать нужный блок памяти, необходимо считать все предшествующие блоки.

Выделяют следующие основные типы устройств памяти:

1. Накопители на жёстких магнитных дисках (винчестеры, НЖМД) - несъемные жесткие магнитные диски. Они относятся к внешним ЗУ с прямым доступом к данным и подразделяются на внутренние, устанавливаемые в системный блок компьютера и внешние (переносные) по отношению к системному блоку.

2. Накопители на гибких магнитных дисках (флоппи-дисководы, НГМД) - устройства для записи и считывания информации с небольших съемных магнитных дисков (дискет), упакованные в пластиковый конверт (гибкий - у 5,25 дюймовых дискет и жесткий у 3,5 дюймовых). Относятся к внешним ЗУ с прямым (произвольным) доступом к данным, хранящихся на магнитном диске и предназначены для долговременного хранения относительно небольших объемов информации.

3. Накопители информации на оптических дисках относятся к внешним ЗУ с прямым (произвольным) доступом к данным и предназначены для долговременного хранения относительно больших объемов информации (сотни мегабайт и десятки гигабайт).

4. Накопители информации на основе флэш-памяти относятся к внешним ЗУ с прямым (произвольным) доступом к данным и предназначены для долговременного хранения относительно небольших объемов информации (единицы гигабайт).

5. Накопители на магнитных лентах (НМЛ)- устройства считывания данных с магнитной ленты, которые относятся к внешним ЗУ с последовательным доступом. Такие накопители достаточно медленные, хотя и большой ёмкости. Современные устройства для работы с магнитными лентами - стримеры - имеют увеличенную скорость записи 4-5Мбайт в сек. Существуют также, устройства позволяющие записывать цифровую информацию на видеокассеты, что позволяет хранить на 1 кассете 2 Гбайта информации. Магнитные ленты обычно используются для создания архивов данных для долговременного хранения информации.

6. Перфокарты - карточки из плотной бумаги и перфоленты - катушки с бумажной лентой, на которых информация кодируется путем пробивания (перфорирования) отверстий. Для считывания данных применяются устройства последовательного доступа.

В настоящее время устройства с последовательным доступом к данными НГМД морально устарели и не применяются, поэтому подробно мы их рассматривать не будем.

«Вариант 1 Для долговременного хранения информации служит: оперативная память; внешняя память; дисковод; процессор. В операционной системе...»

Вариант 1

оперативная память;

внешняя память;

дисковод;

процессор.

вопросительный знак (?)

время создания файла;

объем файла;

место создания файла.

Электронная таблица – это:

прикладная программа для обработки кодовых таблиц;

прикладная программа для обработки структурированных в виде таблицы данных;

устройство компьютера, управляющее его ресурсами при обработке табличных данных;

системная программа, управляющая ресурсами компьютера при обработке таблиц.

Драйвер – это

устройство длительного хранения информации

программа, управляющая конкретным внешним устройством

устройство ввода

устройство вывода

Какое количество информации содержит сообщение о том, что один из 16 студентов группы является победителем олимпиады по информатике?

1024 байта.

ОТМЕТИТЬ ПРАВИЛЬНЫЙ ОТВЕТ



Mysterious Brain Rescue

Master Boot Record

437451552070Ответ:

A) 12; B) 16; C) 8; D) 10

A) 12; B) 16; C) 8; D) 10

A) 43; B) 61; C) 49; D) 56

Вариант 2

Основной элементной базой ЭВМ первого поколения являются:

полупроводники;

электромеханические схемы;

сверхбольшие интегральные схемы;

электровакуумные лампы.

В каком устройстве ПК производится обработка информации?

внешняя память

процессор

Устройство ввода информации с листа бумаги называется:

Для долговременного хранения информации служит:

оперативная память;

внешняя память;

дисковод;

процессор.

В операционной системе Windows собственное имя файла не может содержать символ

вопросительный знак (?)

запятую (,)точку (.)знак сложения (+)Расширение имени файла, как правило, характеризует:

тип информации, содержащийся в файле;

время создания файла;

объем файла;

место создания файла.

ОТМЕТИТЬ ПРАВИЛЬНЫЙ ОТВЕТ

7. Что объединяет эти картинки?

A) логотипы популярных браузеров

B) логотипы операционных систем

C) логотипы графических редакторов



D) логотипы текстовых редакторов

8. Отметьте формат векторного рисунка.

А) *gif; В) *cdr; С) *jpeg; D) *png9. Информационная ёмкость – это …

максимально возможный объём данных, который может сохранить данное устройство памяти

интервал времени от момента посылки запроса информации до момента получения результата на шине данных

количество передаваемых за единицу времени данных после непосредственного начала операции чтения (т.е. без учёта подготовительной стадии)

10. Какая из перечисленных программ является антивирусной?

A) Konqueror; B) Nero; C) Avira; D) FineReader11. К какому типу данных относится char на языке Pascal?

А). Логический; В). Целый; С). Символьный; D). Перечисляемый

12. Что НЕ относится к устройствам ввода?

A) сенсорная панель; B) сканер; C) микрофон; D) плоттер

13. Что означает сокращение MBR?

Mysterious Brain Rescue

Master Boot Record

Main Basic ReloadMinimal Be Restructure

4787900335915Выбрать ответ:

A) 12; B) 16; C) 8; D) 10

00Выбрать ответ:

A) 12; B) 16; C) 8; D) 10

14. В алгоритме, записанном ниже, используются целочисленные переменные k и m. Определите значение переменной m после исполнения данного алгоритма:

15. Как называется наука о методах обеспечения конфиденциальности, целостности данных (невозможности незаметного изменения информации), аутентификации (проверки подлинности авторства или иных свойств объекта), а также невозможности отказа от авторства?

A)криптоника; B)криптография; C) криптоанализ; D) криптология16. Определите необходимый объём видеопамяти для графического режима с разрешением 1024x768 точек и глубиной цветопередачи 16 бит.

A) 1 574 Кбайт; B) 1 536 байт; C) 1 536 Кбайт; D) 1 574 Мбайт

17. Расширения *aifc, *aac, *ogg имеют:

А) видеофайлы; B) графические файлы; C) аудиофайлы; D) текстовые файлы

18. На парковке стоят только легковые автомобили и мотоциклы. Всего на парковке было 50х транспортных средств, из которых: 32х легковые автомобили и 15х мотоциклы. После прибыло еще 11х легковых автомобилей. Сколько всего транспортных средств стало на парковке в десятичной системе счисления?

A) 43; B) 61; C) 49; D) 56

1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ПО РАЗДЕЛАМ И ТЕМАМ

2 семестр 1курс

Компьютерные презентации. Основные требования при создании презентации

Какие параметры выбирают одновременно для всех слайдов презентации

Какие параметры выбирают индивидуально для каждого слайда презентации

Для чего необходим дизайн в презентациях. Как выбрать ФОН для слайда

Что определяет МАКЕТ слайда. Какие макеты чаще используются.

Чем отличатся анимация и звук в ПРОЦЕССЕ СМЕНЫ СЛАЙДОВ от анимации и звука в ПРОЦЕССЕ ПОЯВЛЕНИЯ ОБЪЕКТОВ на слайде.

Какими способами можно организовать переходы между слайдами в интерактивной презентации

Назначение текстовых редакторов. Перечислите, какие текстовые редакторы используются в работе с документами.

Какая операция в текстовом редакторе обеспечивает автоматический поиск и замену слов во всем документе.

Каким цветом выделяется орфографическая ошибка в тексте, а каким синтаксическая

Что необходимо установить перед выводом документа на печать

Что является основным объектом в тексте. Что такое шрифт Какие шрифты различаются в компьютере по способу представления

Какие шрифты легче воспринимаются глазом. Что является единицей измерения размера шрифта

Данные каких типов могут храниться в ячейках электронной таблицы Excel. Преимущества таблиц Excel перед обычными таблицами..Чем определяется адрес ячейки в электронной таблице. Что нельзя удалить в электронной таблице Excel.

Чем вызвано создание компьютерных сетей. Что представляют сети пользователям

ЛОКАЛЬНЫЕ сети. ТОПОЛОГИЯ СЕТЕЙ

Что из себя представляет сеть на основе сервера

С ПОМОЩЬЮ ЧЕГО производится соединение компьютеров

ГЛОБАЛЬНАЯ компьютерная сеть ИНТЕРНЕТ, ИХ КЛАССИФИКАЦИЯ

Что обеспечивает надежность и устойчивость функционирования ГЛОБАЛЬНОЙ компьютерной сети. Что такое IP-адрес

Что обеспечивают Интернет-провайдеры. Перечислите СПОСОБЫ подключения к Интернету. От чего зависит реальная скорость подключения к Интернету.

Ответы к заданиям

Номер вопроса

Вариант 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Вариант 1 B A A B B C D B A C C D B A B C C A

Вариант 2 D C C B A A D B A C C D B A B C C A

Похожие работы:

«Белорусский государственный университет информатики и радиоэлектроники Кафедра химии Отчет по лабораторной работе № 6 Химическое травление полупроводников. Определение плотности дислокацийВыполнил: Студент 1-го курса Группы №_ _Проверил: Молочко А.П. Минск 2016 Экспериментальная часть Цель работы: провести полирующее и селективн...»

«Пример акта внедрения в производство "УТВЕРЖДАЮ" Генеральный директор ОАО "БелВТИ" А.В.Кирпичник _._.2013 М.П. Утверждаю Проректор по учебной работе и социальным вопросам БГУИР _ А.А.Хмыль_._.2013 М.П.АКТ ВНЕДРЕНИЯ (ИСПОЛЬЗОВАНИЯ) результатов научно-исс...»

Средства долговременного хранения и накопления данных (внешнее запоминающие устройство) обеспечивают запись и чтение больших массивов информации, в качестве которых могут использоваться: тексты программ на языках высокого уровня, программы в машинных кодах, файлы с данными и т.д. В качестве внешних запоминающих устройств в ПЭВМ в основном используются накопители на гибких магнитных дисках (НГМД) и накопители на жестких магнитных дисках (НМД) типа "винчестер".

Накопители на гибких магнитных дисках являются основными устройствами внешней памяти ПЭВМ. Носителем информации в НГМД служит гибкий магнитный диск (ГМД), изготовленный из синтетической пленки, покрытой износоустойчивым ферролаком. Информация на ГМД размещается в последовательном коде на концентрических окружностях (дорожках), каждая из которых разбита на секторы. Сектор является единицей обмена данными между ОП и НГМД. В одном секторе может размещаться 128,256, 512 или 1024 байт данных. В ПЭВМ перечисленные форматы данных можно устанавливать программно.

ГМД имеет установочное отверстие (УО) для фиксации диска в дисководе и индексное отверстие (ИО) для идентификации начала дорожек. Для защиты от неблагоприятных воздействий внешней среды ГМД помещается в прямоугольный конверт, имеющий прорезь для подвода магнитных головок (ПМГ), прорезь индексного отверстия (ПИО) и отверстие крепления ГМД в дисководе (ОКД). Информация, которая записывается на ГМД, по своему назначению подразделяется на служебную и рабочую. Служебная информация используется для управления и синхронизации работы НГМД. Она в свою очередь подразделяется на информацию, индентефицирующую дорожку, и информацию, индентефицирующую сектор. Рабочая информация представляет данные пользователя.

Емкость НГМД в ПЭВМ составляет 160 Кбайт и более в зависимости от количества магнитных головок в накопителе и плотности записи данных на ГМД. Существуют следующие разновидности НГМД: с одинарной и двойной плотностью записи; односторонние - с одной и двусторонние - с двумя МГ. В двусторонних НГМД для записи и чтения данных можно использовать обе поверхности ГМД. В соответствии с разновидностями НГМД принята и соответствующая маркировка ГМД: SS - односторонний диск одинарной плотности; SD - односторонний диск двойной плотности; DD - двусторонний диск двойной плотности.

Наряду с НГМД развитые модели ПЭВМ комплектуются также накопителями на магнитных дисках типа "винчестер". Их отличительные особенности -герметично закрытая единая конструкция диска, магнитных головок чтение-записи и их привода, небольшой зазор (по сравнению с обычными НДМ) между магнитными головками и поверхностью диска(0,5 мкм), небольшое давление прижима магнитной головки (10 г по сравнению с 350 г в обычных НМД), малая толщина магнитного диска.


Герметично закрытая конструкция увеличивает в 2 раза надежность работы по сравнению с обычным НМД. Уменьшение зазора между поверхностью диска и магнитными головками значительно увеличивает продольную и поперечную плотность записи. НМД типа "винчестер" считаются третьем поколением НМД и имеют близкие к предельным характеристики. Так, НМД диаметром 356 мм на одной поверхности может включать до 1770 дорожек (1300 Мбайт информации).

Разработка модемов.

Первые системы обработки информации, в которых для подключения абонентов к ЭВМ применялась телеграфная аппаратура, были созданы в начале 60-х годов. В таких системах передача велась с применением обычной телеграфной аппаратуры при относительно низких скоростях, не превышающих 110 бит/сек.

Следующим этапом в развитии систем передачи данных явилась разработка модемов, обеспечивающих возможность передачи двоичной информации по телефонным линиям.

Модем - электронное устройство, наделенное функциями модулирования данных на передающем конце линии связи и демодулирования на принимающем конце линии связи. Модулирование сигнала означает преобразование сигнала к виду, позволяющему передавать его на дальние расстояния. Например, типичный акустический модем оборудован двумя чашеобразными рецепторами, на которые кладется телефонная трубка. Модем подсоединен к компьютеру, от которого принимает информацию в виде последовательности двоичных сигналов - битов. Однако телефон предназначен для передачи звуковой частоты, а двоичные биты - это всего лишь электрические импульсы, не слышные человеческому уху. Поэтому электрические импульсы предварительно преобразуются в модеме в сигналы звуковой частоты, а затем передаются по телефонным линиям. На другом конце происходит обратный процесс переводы сигналов звуковой частоты в последовательность двоичных электрических импульсов - битов, пригодных для работы компьютера. Такие преобразования называются модулированием и демодулированием, описанное устройство является всего лишь простейшим модемом.

Первые образцы модемов имели относительно низкую скорость передачи данных, однако в дальнейшем скорость передачи по коммутируемым каналам возросла до 1200 бит/сек в дуплексном режиме - режиме одновременного ввода и вывода информации или до 9600 бит/сек в полудуплексном режиме - режиме предназначенном для поочередного ввода и вывода информации.

С середины 60-х годов начинается интенсивное развитие специализированных систем обработки информации, базирующихся на выделенных каналах. Такие системы создаются для обеспечения потребностей отдельных организаций, владеющих как вычислительными ресурсами, так и каналами связи. Однако эксплуатация таких систем показала, что применяемые в них вычислительные ресурсы и каналы связи используются недостаточно эффективно, системы оказываются дорогими и мало приспособленными к изменяющимся условиям. Выявилась потребность многих пользователей обращаться к мощным вычислительным машинам на относительно короткие промежутки времени.

Все это привело к разработке систем передачи данных коллективного пользования, в которых многие пользователи могут через сети связи общего пользования подключаться по своему выбору к различным средствам обработки информации.

Клавиатура.

Клавиатура важное и универсальное устройство ввода информации в компьютер.

По расположению клавиш настольные клавиатуры делятся на два основных типа, функционально ничуть не уступающие друг другу. В первом варианте функциональные клавиши располагаются в двух вертикальных рядах, а отдельных группы клавиш управления курсором нет. Всего в такой клавиатуре 84 клавиши.

Второй вариант клавиатуры, которую принято называть усовершенствованной, имеет 101 или 102 клавиши. Клавиатурой такого типа снабжаются сегодня почти все настольные персональные компьютеры. Профессионалы не любят эту клавиатуру из-за того, что к функциональным клавишам приходиться далеко тянуться, в самый верхний ряд клавиш через всю буквенную клавиатуру. Однако количество функциональных клавиш в усовершенствованной клавиатуре не 10, а все 12.

В портативном компьютере клавиатура обычно является встроенной частью конструкции.

Расположение буквенных клавиш на компьютерных клавиатурах стандартно. Сегодня повсеместно применяется стандарт QWERTY -по первым шести латинским буквенным клавишам верхнего ряда. Ему соответствует отечественный стандарт ЙЦУКЕН расположения клавиш кириллицы, практически аналогичный расположению клавиш на пишущей машинке.

Стандартизация в размере и расположении клавиш нужна для того, чтобы пользователь на любой клавиатуре мог без переучивания работать “слепым методом”. Слепой десятипальцевый метод работы является наиболее продуктивным, профессиональным и эффективным. Увы, клавиатура из-за низкой производительности пользователя оказывается сегодня самым “узким местом” быстродействующей вычислительной системы.

Работать с клавиатурой очень просто и наглядно. Чтобы каждому символу клавиатуры поставить в соответствие определенный байт информации, используют специальную таблицу кодов ASCII (American Standart Code for Information Interchange) -американский стандарт кодов для обмена информацией, применяемой на большинстве компьютеров.

После нажатия клавиши клавиатура посылает процессору сигнал прерывания и заставляет процессор приостановить свою работу и переключиться на программу обработки прерывания клавиатуры.

При этом клавиатура в своей собственной специальной памяти запоминает, какая клавиша была нажата (обычно в памяти клавиатуры может храниться до 20 кодов нажатых клавиш, если процессор не успевает ответить на прерывание). После передачи кода нажатой клавиши процессору эта информация из памяти клавиатуры исчезает.

Кроме нажатия клавиатура отмечает также и отпускание каждой клавиши, посылая процессору свой сигнал прерывания с соответствующим кодом.

Ввод символов с клавиатуры осуществляется только в той точке экрана, где располагается курсор. Курсор представляет собой прямоугольник или черту контрастного цвета длинной в один символ.

Специальные клавиши клавиатуры : Специальные (служебные) клавиши выполняют следующие основные функции: {ENTER} -ввод команд на выполнение процессором; {ESC} -отмена какого-либо действия; {TAB} -перемещение курсора на позицию табуляции; {INS} -переключение режима вставки символа в положении курсора в ражим забоя символа в положении курсора;

{DEL} -удаление символа в положении курсора;

{BACKSPACE} -удаление символа слева от курсора;

{HOME} -перемещение курсора в начало текста;

{END} -перемещение курсора в конец текста;

{PGUP} -перемещение курсора на одну экранную страницу по тексту вверх;

{PGDN} -перемещение курсора на одну экранную страницу по тексту вниз;

{ALT} и {CTRL} -при одновременном нажатии этих клавиш с какой-либо другой вызывается изменение действия последней;

{SHIFT} -удержание этой клавиши в нажатом состоянии обеспечивает смену регистра;

{CAPS LOCK} -фиксация/расфиксация регистра заглавных букв;